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Introduction

Extension of Galois theory to differential equations,

Continuous groups of transformations (Lie groups actions),

Infinitesimal continuous groups of transformations (Lie algebras
of vector fields).

Families of first-order differential equations whose solutions are
functions of a particular family of solutions and several
parameters (Lie systems).

Lie obtained very important and relevant results, but his works were not clear, they
lacked precision, and contained obscure statements that led misunderstandings.
Lie classified finite-dimensional Lie algebras of analytic vector fields:

On R, C, R2, C2, and C3 (this latter one partially).

Several technical assumptions were used, and they are relevant.
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Every first-order system of ordinary differential equations in normal form on an
n-dimensional manifold amounts to a t-dependent vector field.

X (t, x) =
∑n

i=1 X
i (t, x)

∂

∂x i
⇐⇒

dx i

dt
= X i (t, x), i = 1, . . . , n.

Linear nonautonomous systems of ordinary differential equations admit linear
superposition rules. The equation

dx

dt
= a0(t) + a1(t)x + a2(t)x

2, x ∈ R,

for arbitrary t-dependent functions a0(t), a1(t), a2(t), admits a nonlinear superposition
rule

x(t) =
x1(t)(x2(t)− x3(t))− kx2(t)(x3(t)− x1(t))

x2(t)− x3(t)− k(x3(t)− x1(t))

in terms of three particular different solutions x1(t), x2(t), x3(t).

Definition

A superposition rule for a system X on a manifold N is a function Φ : Nm × N → N,
x = Φ(x(1), . . . , x(m); k), such that the general solution x(t) of our system can be
brought into the form

x(t) = Φ(x(1)(t), . . . , x(m)(t); k),

where x(1)(t), . . . , x(m)(t) is any generic family of particular solutions and k is a point
of N to be related to initial conditions.
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Vector fields and differential equations

Proposition (Guldberg & Köningsberger up to 1893)

Every non-autonomous analytic first-order differential equation on the real line
admitting a superposition rule is a particular case of linear or Riccati equation.

Every differential equation of the form

dx

dt
= X (t, x), t ∈ R, x ∈ R,

for an analytic function X (t, x) admitting a superposition rule is locally diffeomorphic
around a generic point x0 ∈ R to

dx

dt
= c0(t) + c1(t)x + c2(t)x

2, t ∈ R, x ∈ R,

for some t-dependent functions c0(t), c1(t), c2(t).

The Lie–Scheffers Theorem

A system X on N admits a superposition rule if and only if X =
∑r

α=1 bα(t)Xα for a
family of vector fields X1, . . . ,Xr on N spanning a finite-dimensional Lie algebra V of
vector fields and certain t-dependent functions b1(t), . . . , br (t). We call V a
Vessiot–Guldberg Lie algebra for the Lie system.
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Lie algebras of vector fields on the real line

Proposition (Lie 1880)

Every finite-dimensional Lie algebra of analytic vector fields on R admit an analytic
coordinate system, around a point where one of its vector fields does not vanish,
where it becomes a Lie subalgebra of

VRic =

〈
X0 =

∂

∂x
,X1 = x

∂

∂x
,X2 = x2

∂

∂x

〉
≃ sl2

[X0,X1] = X0, [X0,X2] = 2X1, [X1,X2] = X2.

Removing technical conditions is very interesting. For bump functions fi (x) as below:

Xi = fi (x)
∂

∂x
, [Xi ,Xj ] = 0,

i = 1, 2, 3, 4, . . .

Note that Xk = yk ∂
∂y

, for k > 2, is not (even smooth) diffeomorphic to any element

of VRic around y = 0:

Xk = y(x)k
dx

dy
(y(x))

∂

∂x
, y(0) = 0,

dy

dx
(0) ̸= 0,

since the first non-zero coefficient of the Taylor expansion in x is k (Hitchin’s
classification result).
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Problems with Lie’s classifications

Excerpt from A. González-López, N. Kamran, and P.J. Olver, Lie algebras of vector
fields in the real plane, Proc. London Math. Soc. 64, 339–368 (1992).

The modern local classification of Lie algebras of analytic vector fields on the plane is
called the GKO classification.
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Finite-dimensional Lie algebras of analytic vector fields on the plane I
If not otherwise stated, Lie algebras of vector fields are finite-dimensional and analytic.
Generalised distributions are called distributions. Hereafter, N is a manifold.

Definition

Given a Lie algebra V of vector fields on N, its associated distribution is the
distribution DV on N spanned by the vector fields of N, i.e.

DV
x = ⟨X (x)|X ∈ V ⟩, ∀x ∈ N.

A distribution DV is involutive and integrable, but not necessarily regular.

Definition

A regular point of a Lie algebra V of vector fields on N is a point where the associated
distribution D is locally regular. If a point is not regular, it is called singular.

For instance, a vector field X on N with an isolated zero at x0 ∈ N spans a
one-dimensional Lie algebra VX , but its associated distribution, DVX , has a singular
point at x0 ∈ N.

Definition

A Lie algebra V of vector fields on R2 is imprimitive when there exists a rank-one
distribution D ⊂ TR2 such that [X ,Y ] takes values in D for every X ∈ V and every
vector field Y taking values in D. Otherwise, V is called primitive.
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Finite-dimensional Lie algebras of analytic vector fields on the plane II
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Finite-dimensional Lie algebras of analytic vector fields on the plane III
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Relation between Lie algebras of analytic vector fields on the plane

A. Ballesteros, A. Blasco, F. J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems
on the plane: properties, classification and applications, J. Differential Equations 258,
2873–2907 (2015).
A.M. Grundland and J. de Lucas, A Lie systems approach to the Riccati hierarchy and
partial differential equations, J. Differential Equations 263, 299–337 (2017).
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Proposition

Every Lie algebra of conformally Euclidean (resp. hyperbolic) vector fields on R2 is
locally diffeomorphic to a Lie subalgebra of P7 (resp. I11).

We have the following conjecture (partially proved). Recall that projective vector fields
of a metric are those whose flow map geodesic into geodesics up to reparametrisation.

Conjecture

Every Lie algebra of projective vector fields on R2 relative to a flat Riemannian metric
(resp. flat (1,1) pseudo-Riemannian) is locally diffeomorphic to a Lie subalgebra of P8

(resp. I20).

The above summarises all the GKO classification apart from I12 and I13, but they can
also be geometrically described as symmetries of degenerate two-contravariant
symmetric tensors.

Javier de Lucas Araujo The local classification of finite-dimensional Lie algebras of analytic Hamiltonian vector fields on the plane



Introduction
Classifying finite-dimensional analytic Lie algebras of vector fields

Lie algebras of analytic Hamiltonian vector fields on the plane

Symplectic manifolds

Definition

A symplectic manifold (N, ω) is a manifold N along with a closed non-degenerate
two-form ω on N, whether non-degenerate amounts to the existence of n ∈ N such
that ωn is a volume form on N.

Definition

We say that X is a Hamiltonian vector field if ιXω = df for a certain function
f ∈ C∞(N). We say that f is a Hamiltonian function for X . Conversely, each f
induces a unique Hamiltonian vector field Xf .

Proposition

The space Ham(N, ω) of Hamiltonian vector fields for a symplectic manifold (N, ω) is
a Lie algebra.
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Proposition

Every symplectic manifold (N, ω) induces a Poisson bracket (C∞(N), ·, {·, ·}) of the
form

{f , g} = ω(Xf ,Xg ) = Xg f , ∀f , g ∈ C∞(N).

It can be proved that X{f ,g} = −[Xf ,Xg ].

Proposition

A symplectic manifold (N, ω) induces an exact sequence of Lie algebras

0 ↪→ R ↪→ C∞(N)
Bω

−→ Ham(N, ω) → 0,

where Bω(f ) := −Xf for every f ∈ C∞(N) .
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Poisson manifolds

Definition

A Poisson manifold (N, {·, ·}) is a manifold N along with a Poisson bracket
{·, ·} : C∞(N)× C∞(N) → C∞(N). Such a Poisson bracket is called a Poisson
structure.

The Poisson structure induces a bivector Λ ∈ Γ(
∧2 TN) such that

{f , g} = Λ(df , dg).

The Jacobi identity is equivalent to the condition [Λ,Λ]SB = 0, where [Λ,Λ]SB is the
Schouten-Nijenhuis bracket. Then, we can refer to Poisson manifolds as (N, {·, ·}) or
(N,Λ).

Definition

We say that X is a Hamiltonian vector field if there exists an f ∈ C∞(N) such that
Xg = {f , g} for every g ∈ C∞(N). We call f a Hamiltonian function for X .
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Proposition

The space Ham(N,Λ) of Hamiltonian functions for a Poisson manifold (N,Λ) is a Lie
algebra.

Proposition

We say that f is a Casimir function of (N, {·, ·}) if Xf = 0. We write Cas(N,Λ) for
the space of Casimir functions for (N,Λ).

Proposition

Every Poisson manifold (N, ω) induces an exact sequence of Lie algebras

0 ↪→ Cas(N,Λ) ↪→ C∞(N)
BΛ

−→ Ham(N,Λ) → 0,

where BΛ(f ) = −Xf for every f ∈ C∞(N).
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Hamiltonian Lie systems on the plane
Consider the nonautonomous complex Bernoulli differential equations of the form

dz

dt
= a1(t)z + a2(t)z

n, n /∈ {0, 1}, z ∈ C, (1)

where a1(t) = iaI1(t) and a2(t) = aR2 (t) + iaI2(t) for real t-dependent functions

aI1(t), a
R
2 (t), a

I
2(t). Writing z = reiθ, system (1) becomes

dr

dt
= aR2 (t) r

n cos[θ(n − 1)]− aI2(t) r
n sin[θ(n − 1)],

dθ

dt
= aI1(t) + aR2 (t) r

n−1 sin[θ(n − 1)] + aI2(t) r
n−1 cos[θ(n − 1)].

(2)

This system is related to X = aI1(t)X1 + aR2 (t)X2 + aI2(t)X3, where

X1 =
∂

∂θ
, X2 = rn cos[θ(n − 1)]

∂

∂r
+ rn−1 sin[θ(n − 1)]

∂

∂θ
,

X3 = −rn sin[θ(n − 1)]
∂

∂r
+ rn−1 cos[θ(n − 1)]

∂

∂θ

(3)

span Lie algebra, VCB ≃ R ⋉ R2 ≃ ⟨X1⟩ ⋉ ⟨X2,X3⟩, with commutation relations

[X1,X2] = (n − 1)X3, [X1,X3] = −(n − 1)X2, [X2,X3] = 0. (4)

So, X takes values in VCB and becomes a Lie system. Since X1 ∧ X2 ̸= 0 and
adX1

: Xi ∈ ⟨X2,X3⟩ 7→ [X1,Xi ] ∈ ⟨X2,X3⟩ is diagonalizable over C but not over R,
then VCB ≃ P1 ≃ iso(2).
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Consider the Poisson bivector

Λ = r2n−1 ∂

∂r
∧

∂

∂θ
(5)

turning the elements of V = ⟨X1,X2,X3⟩ into Hamiltonian vector fields. Indeed, some
Hamiltonian functions for X1, X2, X3 read

h1 =
1

(2n − 2)r2n−2
, h2 =

sin[θ(n − 1)]

rn−1(n − 1)
, h3 =

cos[θ(n − 1)]

rn−1(n − 1)
,

correspondingly. These functions along with h0 = 1 fulfill

{h1, h2}Λ = −(n− 1)h3, {h1, h3}Λ = (n− 1)h2, {h2, h3}Λ = h0, {h0, · }Λ = 0.

Hence, system (2) with aR1 (t) = 0 is a LH system as it is related to a t-dependent
vector field taking values in a Vessiot–Guldberg Lie algebra V of Hamiltonian vector
fields relative to Λ. Meanwhile, the LH algebra spanned by h1, h2, h3, h0 is isomorphic
to the centrally extended Euclidean algebra iso(2).

Relevant property

Λ = X2 ∧ X3 =⇒ LXi
Λ = 0, [Λ,Λ]SN = 0.

It is worth noting that the initial system can be studied as holomorphic. This
simplifies some expressions, like (2), and make more complicated others, like (5), but
the final idea is independent of the coordinate description.
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Turning a Lie algebra of vector fields into Hamiltonian ones relative to a symplectic
form involves solving a system of PDEs.

Definition

Given a vector space V of vector fields on U, we say that V admits a modular
generating system (U1,X1, . . . ,Xp) if U1 is a dense open subset of U such that every
X ∈ V |U1

can be brought into the form X |U1
=

∑p
i=1 giXi |U1

for certain functions
g1, . . . , gp ∈ C∞(U1) and vector fields X1, . . . ,Xp ∈ V .

Theorem

Let V be a Lie algebra of vector fields on U ⊂ R2 admitting a modular generating
system (U1,X1, . . . ,Xp). We have that the space V consists of Hamiltonian vector
fields relative to a symplectic form on U if and only if:

Let g1, . . . , gp be certain smooth functions on U1 ⊂ U. Then,

X |U1
=

p∑
i=1

giXi |U1
∈ V |U1

⇒ divX |U1
=

p∑
i=1

gidivXi |U1
,

where divX is relative to dx ∧ dy .

The elements X1, . . . ,Xp admit a common non-vanishing integrating factor on U.

If the rank of DV is two on U, the symplectic form is unique up to a multiplicative
non-zero constant.
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Proposition

Let V be a Lie algebra of planar vector fields. The vector fields of V are Hamiltonian
with respect to a bivector field Λ ∈ V ∧ V \{0} if and only if V admits a
one-dimensional trivial Lie algebra representation within V ∧ V .

Examples:

a) Lie algebra I16 = ⟨∂x , ∂y , x∂x − y∂y , x∂y , . . . , x r∂y ⟩. We have

[∂x , ∂x ∧ ∂y ]SN = 0, [x∂x − y∂y , ∂x ∧ ∂y ]SN = −∂x ∧ ∂y + ∂x ∧ ∂y = 0,

[∂y , ∂x ∧ ∂y ]SN = 0, [x j∂y , ∂x ∧ ∂y ]SN = −jx j−1∂y ∧ ∂y = 0, j = 1, . . . , r .

Hence, W = ⟨∂x ∧ ∂y ⟩ ⊂ V ∧ V is a trivial one-dimensional representation of V . As a
consequence, ∂x ∧ ∂y turns all the elements of W into Hamiltonian vector fields.
b) Lie algebra I14B = ⟨∂x , ∂y , η2(x)∂y , . . . , ηr (x)∂y ⟩. The Lie derivatives of
Λ := ∂x ∧ ∂y ∈ V ∧ V with respect to elements of I14B vanish:

[∂x , ∂x ∧ ∂y ]SN = [∂y , ∂x ∧ ∂y ]SN = 0, [ηj (x)∂y , ∂x ∧ ∂y ]SN = −
∂ηj

∂x
∂y ∧ ∂y = 0,

for j = 2, . . . , r . This turns W = ⟨∂x ∧ ∂y ⟩ into a trivial one-dimensional
representation of V . So, V consists of Hamiltonian vector fields relative to Λ.
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Theorem 1

If V is a planar Vessiot–Guldberg Lie algebra admitting a two-dimensional ideal I such
that I ∧ I ̸= {0} and the elements of V act on I by traceless operators, namely the
mappings ϑX : Y ∈ I 7→ [X ,Y ] ∈ I are traceless for each X ∈ V , then V becomes a
Lie algebra of Hamiltonian vector fields with respect to every element of I ∧ I\{0}.

Example: Lie algebra P1 = ⟨∂x , ∂y , y∂x − x∂y ⟩

admits a two-dimensional ideal I = ⟨∂x , ∂y ⟩ satisfying that I ∧ I ̸= {0}. Moreover,
∂x , ∂y , y∂x − x∂y act as traceless operators on I . In view of Theorem 1, the basis
∂x ∧ ∂y of I ∧ I becomes a Poisson bivector turning P1 into a Lie algebra of
Hamiltonian vector fields.

Example: Lie algebra P5 = ⟨∂x , ∂y , y∂x , x∂y , x∂x − y∂y ⟩

We have that I = ⟨∂x , ∂y ⟩ is an ideal of P5 with I ∧ I ̸= 0 and it is straightforward to
prove that all elements of P5 act as traceless linear operators on I . Hence, Theorem 1
ensures that P5 is a Lie algebra of Hamiltonian vector fields relative to the basis
Λ := ∂x ∧ ∂y of I ∧ I .

The above method works for most non-simple Lie algebras of Hamiltonian vector fields
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Classification of Lie algebras of Hamiltonian vector fields on the plane

# Primitive Hamiltonian functions hi ω Lie–Hamilton algebra

P1 A0 ≃ iso(2) y, −x, 1
2
(x2 + y2), 1 dx ∧ dy iso(2)

P2 sl(2) −
1

y
, −

x

y
, −

x2 + y2

y

dx ∧ dy

y2
sl(2) or sl(2) ⊕ R

P3 so(3)
−1

2(1 + x2 + y2)
,

y

1 + x2 + y2
,

dx ∧ dy

(1 + x2 + y2)2
so(3) or so(3) ⊕ R

−
x

1 + x2 + y2
, 1

P5 sl(2) ⋉ R2 y, −x, xy, 1
2
y2, − 1

2
x2, 1 dx ∧ dy sl(2) ⋉ R2 ≃ h6

# Imprimitive Hamiltonian functions hi ω Lie–Hamilton algebra

I1 R
∫ y f (y′)dy′ f (y)dx ∧ dy R or R2

I4 sl(2) (type II)
1

x − y
,

x + y

2(x − y)
,

xy

x − y

dx ∧ dy

(x − y)2
sl(2) or sl(2) ⊕ R

I5 sl(2) (type III) −
1

2y2
, −

x

y2
, −

x2

2y2

dx ∧ dy

y3
sl(2) or sl(2) ⊕ R

I8 B−1 ≃ iso(1, 1) y, −x, xy, 1 dx ∧ dy iso(1, 1) ≃ h4

I12 Rr+1 −
∫ xf (x′)dx′,−

∫ xf (x′)ξj (x
′)dx′ f (x)dx ∧ dy Rr+1 or Rr+2

I14A R ⋉ Rr (type I) y, −
∫ x ηj (x

′)dx′, 1 /∈ ⟨ηj ⟩ dx ∧ dy R ⋉ Rr or (R ⋉ Rr ) ⊕ R

I14B R ⋉ Rr (type II) y, −x, −
∫ x ηj (x

′)dx′, 1 dx ∧ dy (R ⋉ Rr )

I16 C r
−1 ≃ h2 ⋉ Rr+1 y, −x, xy, −

x j+1

j + 1
, 1 dx ∧ dy h2 ⋉ Rr+1
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Examples of Lie–Hamilton systems on the plane

Table: Specific Lie–Hamilton systems according to the GKO classification.

LH algebra # LH systems

sl(2) P2 Milne–Pinney and Kummer–Schwarz equations with c > 0

Complex Riccati equation

sl(2) I4 Milne–Pinney and Kummer–Schwarz equations with c < 0

Split-complex Riccati equation

Coupled Riccati equations

Planar diffusion Riccati system for c0 = 1

so(3) P3 Integrable system with trygonometric non-linearities

sl(2) I5 Milne–Pinney and Kummer–Schwarz equations with c = 0

Dual-Study Riccati equation

Harmonic oscillator

Planar diffusion Riccati system for c0 = 0

h6 ≃ sl(2) ⋉ R2 P5 Dissipative harmonic oscillator

Second-order Riccati equation in Hamiltonian form

h2 ≃ R ⋉ R Ir=1
14A Complex Bernoulli equation

Generalised Buchdahl equations

Lotka–Volterra systems
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Outlook

We are studying the classification of analytic and smooth finite-dimensional Lie
algebras of vector fields on the plane around singular points and the general
three-dimensional one.

We are studying the classification of finite-dimensional Lie algebras of smooth
vector fields on the real line around singular points.

Applications to the stability of systems are being analysed.
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