Introduction to \mathbb{Z} -graded manifolds

Alexei Kotov

The Trans-Carpathian Seminar on Geometry & Physics May 29, 2024

- The talk is based on a series of papers publish jointly with Vladimir Salnikov (La Rochelle), Camille Laurent-Gengoux (Metz), Benoit Jubin (Luxembourg, Paris), and Norbert Poncin (Luxembourg).
- The general theory of Z--graded manifolds was developed in
 - 嗪 Kotov, A., Salnikov, V. The category of Z-graded manifolds: what happens if you do not stay positive, Differential Geometry and its Applications 93, 102109 (2024)
- Classification theorems for smooth Z--graded Q-manifolds are explained and proven in

📡 Kotov, A., Laurent-Gengoux, C., Salnikov, V. Normal forms of \mathbb{Z} -graded Q-manifolds, J. Geom. Phys. **191**, 104908 (2023)

The last two articles in the list are devoted to graded and dg Lie (super) groups.

- 💊 Jubin, B., Kotov, A., Poncin, N., Salnikov, V. Differential graded Lie groups and their differential graded Lie algebras. Transformation Groups 27 497–523 (2022)
- 🔖 Kotov, A., Salnikov, V. Various instances of Harish-Chandra pairs, J. Geom. Phys. 191, 104917 (2023)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A \mathbb{Z} -graded manifold is a topological space X together with a sheaf of \mathbb{Z} -graded algebras, locally modelled as free algebras of coordinates of degrees (weights) ..., -2, -1, 0, 1, 2.

For example:

coordinates	ψ^{I}	ζ^k	x ⁱ	ξa	η^{lpha}	
weights	-2	-1	0	1	2	

What is a free algebra in this context?

In the smooth case we require the free algebra to include:

- smooth functions of degree 0 coordinates;
- polynomials of coordinates of non-zero degree

The change of coordinates must preserve the degree!

For example,

$$x^i \longmapsto x^i + \xi^a \zeta^k + \psi^l \eta^{\alpha}, \ \xi^a \longmapsto \xi^a, \ \dots$$

where the coordinate weights are the same as above.

The change of coordinates:

$$x^{i} \longmapsto x^{i} + \xi^{a} \zeta^{k} + \psi^{l} \eta^{\alpha}, \ \xi^{a} \longmapsto \xi^{a}, \ \dots$$

The weight table:

coordinates	ψ'	ζ^k	x ⁱ	ξa	η^{lpha}	
weights	-2	-1	0	1	2	

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Along with coordinate weights, we will also talk about their parities, which tell us how the coordinates commute.

- The parity takes values in Z₂;
- Often the parity of a coordinate is the reduction of its weight modulo 2;
- But it is not the only possibility: we only require that, roughly speaking, the set of coordinates decomposed into the subsets of odd and even coordinates;
- odd coordinates anti-commute with each other (and thus their squares are equal to 0), while even coordinates commute with all other functions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let us compute the expression for $\cos(x^i)$:

$$\cos(x^i) \longmapsto \cos\left(x^i + \xi^a \zeta^k + \psi^l \eta^lpha
ight) =$$

= Taylor expansion w.r.t. $\xi^a, \zeta^k, \psi^l, \eta^{\alpha}$

- Using the described procedure we obtain polynomials of odd coordinates (since they are nilpotent).
- However, with even coordinates a "problem" arises: we have to assume a formal power series.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Another possibility, an alternative to formal series, is to consider smooth functions of coordinates not only of zero, but also of non-zero weight. Then we will arrive at another version of \mathbb{Z} -graded manifolds ("non-perturbative", speaking in the physical language of field theory). Although this approach is not the subject of the talk, a few words will be said about it later.

Let $W = \bigoplus_{i \in \mathbb{Z} \setminus \{0\}} W_i$ be a \mathbb{Z} -graded vector space ($W_0 = 0$).

Let M be a smooth manifold, $U \subset M$ a coordinate chart with smooth coordinates $\{x^i\}$.

Let V be a free $C^{\infty}(U)$ -module generated by W, i.e.

$$V = \bigoplus_i V_i$$

where

$$V_i = C^{\infty}(U) \otimes W_i$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Define

$$\mathcal{A} = Sym_{C^{\infty}(U)}(V) = T_{C^{\infty}(U)}(V) / \langle v_1 \otimes v_2 - (-1)^{p_1 p_2} v_2 \otimes v_1 \rangle$$

where p_1, p_2 are the parities of v_1, v_2 , respectively.

 \mathcal{A} is a \mathbb{Z} -graded supercommutative algebra (i.e. the elements of pure parity commute w.r.t. their parities):

$$\mathcal{A} = \bigoplus_{i \in \mathbb{Z}} \mathcal{A}_i$$

where A_i consists of elements of weight *i* (we apply the standard rule for the degree of the product of two elements - it's the sum of the degrees).

For any $p \ge 0$, let $F^p \mathcal{A}$ be the ideal of \mathcal{A} generated by all elements of degree $\ge p$, that is,

$$F^{p}\mathcal{A} = \left\langle \bigoplus_{j \geq p} \mathcal{A}_{j} \right\rangle$$

We obtain a decreasing filtration of \mathcal{A} by ideals

$$\mathcal{A} = F^0 \mathcal{A} \supset F^1 \mathcal{A} \supset F^2 \mathcal{A} \supset F^3 \mathcal{A} \supset \dots$$

For all $p \ge q$, there is a canonical morphism of \mathbb{Z} -graded supercommutative algebras

$$\mathcal{A}/F^{p}\mathcal{A} \xrightarrow{\pi_{p,q}} \mathcal{A}/F^{q}\mathcal{A}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

We obtain a projective system of algebras

$$\left(\mathcal{A}/F^{p}\mathcal{A}, \pi_{p,q}\right)$$

Let

$$\widehat{\mathcal{A}} = \varprojlim \mathcal{A} / F^{p} \mathcal{A}$$

be the projective (inverse) limit of this system. It is a \mathbb{Z} -graded supercommutative algebra.

Since

$$\mathcal{A}_k = \bigoplus_{i_1 + \ldots + i_s = k} V_{i_1} \odot \ldots \odot V_{i_s}$$

even if each homogeneous component V_i has finite rank, the rank of A_k need not be finite!

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Decompose

$$V = V_+ \bigoplus V_-$$

where

$$V_{\pm} = \bigoplus_{\pm i > 0} V_i$$

is the sum of elements of positive (negative) weight, respectively.

Define w_{\pm} the positive and negative degree, such that

$$w = w_+ - w_-$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where w_+ and w_- count "positive" and "negative" degrees independently.

For example

coordinates	ψ'	ζ^k	ξ^a	η^{lpha}
w ₊	0	0	1	2
W_	2	1	0	0
$w = w_+ - w$	-2	-1	1	2

For

$$f(x,\xi,\eta,\psi) = f_+(x,\xi,\eta)f_-(x,\zeta,\psi)$$

one has

$$w_+f = w(f_+)$$
 $w_-f = -w(f_-)$

(ロ)、(型)、(E)、(E)、 E) の(()

Consider $(\mathcal{A}/F^{p}\mathcal{A})_{i}$ for some *i*.

 $(\mathcal{A}/F^{p}\mathcal{A})_{i}$ has finite rank since $w_{+} < p$

• $(\mathcal{A}/F^{p}\mathcal{A})_{i}$ is a trivial $C^{\infty}(U)$ module of finite graded rank (i.e. the rank of each homogeneous component is finite);

- the space of its sections is a sheaf over U;
- each $A_i = \lim_{i \to \infty} (A/F^p A)_i$ is a sheaf over U;
- \mathcal{A} is a sheaf over U.

GLOBAL THEORY

Let M be a smooth manifold.

- Construct a presheaf of Z−graded supercommutative algebras locally modelled by Sym_{C∞(U)}(V);
- It is a sheaf since it is obtained by gluing sheaves over an open covering of M;
- Section of this sheaf are called functions on a Z−graded smooth manifold M with the base M:

$$\widehat{\mathcal{A}} = \mathcal{F}(\mathcal{M})$$

$\mathbb{N}-\mathsf{graded}$

We can allow polynomials of positive degree variables whose coefficients are smooth functions of zero degree variables

 $\mathcal{F}_0(\mathcal{M})=C^\infty(M)$ - this means that there is a canonical projection $\mathcal{M} o M$

There is a canonical section ("zero section") of the above projection map:

$$\mathcal{M} \to M, \ M \subset \mathcal{M}$$

$\mathbb{Z}\text{-}\mathsf{graded}$

This class of local functions is not stable under the homogeneous change of coordinates

 $\mathcal{F}_0(\mathcal{M}) \neq C^{\infty}(M)$ - there is no canonical projection of a general \mathbb{Z} -graded smooth manifold onto its base

There is a canonical embedding $M \subset \mathcal{M}$: Let *I* be an ideal generated by all functions of non-zero weight. Then

$$C^{\infty}(M) = \mathcal{F}(\mathcal{M})/I$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let $E \to M$ be a vector bundle over a manifold (smooth, analytic, algebraic). We associate to it a \mathbb{Z}_2 -graded (or super) manifold $\mathcal{M} = \Pi E$, such that the algebra of functions on it is

 $\mathcal{F}(\mathcal{M}) = \Gamma_M(\Lambda^{\bullet} E^*)$

A supermanifold is characterized by its structure sheaf of \mathbb{Z}_2 -graded supercommutative algebras over a base M locally modelled by $\Gamma_U(\Lambda^{\bullet}E^*)$, where $U \subset M$ is an open chart and $E \to U$ is a vector bundle.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- At least some supermanifolds (smooth, algebraic, analytic) are constructed out of global vector bundles as above. They are called split supermanifolds;
- Let *I* be the ideal of the structure sheaf generated by all odd functions. Then

$$\mathcal{F}(M) = \mathcal{F}(\mathcal{M})/I$$

- The latter means that, as in the Z-graded case, there is a canonical embedding M ⊂ M;
- Just as in the general \mathbb{Z} -graded case and unlike the \mathbb{N} -graded situation, there is no canonical projection $\mathcal{M} \to M$;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We can canonically associate a split supermanifold to any supermanifold using the scheme we describe below.

Define a vector bundle E over M as follows:

$$\Gamma_M(E^*) = I/I^2$$

One can easily show that I/I^2 is a locally free sheaf of $\mathcal{F}(\mathcal{M}) = \mathcal{F}(\mathcal{M})/I$ modules, thus we obtained a vector bundle over the base canonically associated to the supermanifold.

Hence there is another split supermanifold $\overline{\mathcal{M}}$ uniquely determined by $\mathcal{M}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BATCHELOR-GAWEDZKI THEOREM In the smooth case $\mathcal{M} \simeq \overline{\mathcal{M}}$

Back to \mathbb{Z} -graded manifolds

We already know that

$$\mathcal{F}(M) = \mathcal{F}(\mathcal{M})/I$$

for the ideal I generated by all functions of non-zero weight.

 Define a Z−graded vector bundle E → M using the same procedure as for a supermanifold:

$$\Gamma_M(E^*) = I/I^2$$

• Let $\overline{\mathcal{M}}$ be another \mathbb{Z} -graded manifold, such that

$$\mathcal{F}(\overline{\mathcal{M}}) = \Gamma_M\left(\widehat{Sym}(E^*)\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

\mathbb{Z} -graded Batchelor-Gawedzki theorem

In the smooth case

$$\mathcal{M}\simeq\overline{\mathcal{M}}$$

"Non-perturbative" approach to \mathbb{Z} -graded manifolds

Let \mathcal{M} be a \mathbb{Z} -graded manifold. Then the algebra of functions is a direct sum of its homogeneous components:

$$\mathcal{F}(\mathcal{M}) = igoplus_{i \in \mathbb{Z}} \mathcal{F}_i(\mathcal{M})$$

Define an operator $\epsilon \colon \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{M})$, such that

$$\epsilon_{|_{\mathcal{F}_i(\mathcal{M})}} = i \operatorname{Id}_{\mathcal{F}_i(\mathcal{M})}$$

 ϵ is a derivation of an even parity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This suggests another definition of a \mathbb{Z} -graded supermanifold (T. Voronov):

A \mathbb{Z} -graded manifold is a supermanifold endowed with an even derivation of functions (a vector field) ϵ and a local covering by coordinate charts $(U, \{z^i\})$, such that

$$\epsilon(z^i) = k_i z^i$$

for some integers k_i .

From the definition it follows that the zero locus M of ϵ is a smooth supermanifold. This is exactly the base of \mathcal{M} .

\mathbb{Z} -graded Borel Lemma (Kotov, Salnikov)

For any formal (in the normal direction) power series f on M of weight k there exists a smooth function \tilde{f} on \mathcal{M} of the same weight k, the (normal) Taylor expansion of which is f.

EXAMPLE

 $\mathcal{M} = \mathbb{R}P^1$ with the standard affine coordinate charts (U_0, z) and (U_∞, u) with the relation $z = \frac{1}{u}$ on the double overlap $U_0 \cap U_\infty$.

Define $\epsilon = z \frac{\partial}{\partial z}$ over U_0 ; this vector field uniquely extends to U_∞ as $\epsilon = -u \frac{\partial}{\partial u}$.

- The zero locus of ϵ is $\{0\} \cup \{\infty\}$. It is disconnected;
- The weights around the connected components of ϵ are different: it is +1 around 0 and -1 around ∞ .

In general, the weights in a neighborhood of a connected component of the zero locus of ϵ are the same, while around different components they can be different. The formal neighborhood of a connected component is a \mathbb{Z} -graded manifold in the "previous" sense.

A $\mathbb{Z}-graded$ Lie algebra is a Lie superalgebra \mathfrak{g} together with a grading

$$\mathfrak{g}=igoplus_{i\in\mathbb{Z}}\mathfrak{g}_{i}$$

such that the Lie bracket $[,]\colon \mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g}$ is a degree 0 operation, i.e.

 $[\mathfrak{g}_i,\mathfrak{g}_j]\subset\mathfrak{g}_{i+j}$

The corresponding grading operator ϵ , defined such that

$$\epsilon_{|_{\mathfrak{g}_i}} = i \operatorname{Id}_{\mathfrak{g}_i}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a degree 0 derivation of $\mathfrak{g},$ i.e. $\epsilon\big[x,y\big]=\big[\epsilon(x),y\big]+\big[x,\epsilon(y)\big]$

Let G be a Lie supergroup, such that its Lie superalgebra is \mathfrak{g} . Suppose ϵ_G be a vector field on G, the infinitesimal counterpart of which is ϵ .

This correspondence is an example of the van Est map. The obtained vector field is multiplicative, i.e. the multiplication map $G \times G \rightarrow G$ is ϵ -equivariant.

Alternatively, one can illustrate it as follows: $\exp(t\epsilon_G)$, $t \in \mathbb{R}$ is a family of automorphisms of G, such that the induced family of automorphisms of \mathfrak{g} is $\exp(t\epsilon)$.

A good definition of a \mathbb{Z} -graded Lie group should be such that it is the Lie group of a \mathbb{Z} -graded Lie algebra!

Does the pair (G, ϵ_G) satisfy the definition of a \mathbb{Z} -graded supermanifold?

It was shown (Kotov-Salnikov) that a vector field ϵ_G has the required form in a certain neighborhood of its zero locus, which is the Lie subgroup corresponding to \mathfrak{g}_0 .

QUESTION

Can we find an open covering of G by coordinate charts with adapted coodrinates (of pure weights w.r.t. ϵ_G)?

Q-MANIFOLDS

A Q-manifold (A. Schwarz) is a \mathbb{Z} -graded supermanifold endowed with a homological degree 1 vector field. A Q-submanifold is a graded immersed super submanifold such that the corresponding immersion is a Q-morphism.

Examples of non-negatively graded Q-manifolds

- Lie algebroids (A. Vaintrob, Q-manifolds of degree 1); the Q-field is given by the Lichnerowicz differential
- For Lie algebras the Lichnerowicz differential is the the Chevalley-Eilenberg differential
- *T*[1]*M* for a graded supermanifold; the Q-field is the de Rham operator
- Lie-infinity algebroids (general non-negatively or $\mathbb{N}-\text{graded}$ Q-manifolds)

Examples of Q-manifolds

- L_{∞} -algebras (viewed as formal pointed Q-manifolds)
- symplectic Q-manifolds (graded super symplectic manifolds whose symplectic structure is invariant under Q)
- In particular, the symplectic degree 2 Q-manifold corresponding to a Courant algebroid (D. Roytenberg, A. Weinstein)
- The group-like objects in the category of Q-manifolds are dg or Q-groups (B. Jubin, A.K., N. Poncin, V. Salnikov, 2019-22, integration of dg Lie algebras to dg Lie groups)
- The differential graded resolution of a (possibly) singular variety, an example of a non-positively graded Q-manifold

Example of a differential graded (Koszul) RESOLUTION

Coordinates on the \mathbb{Z} -graded supermanifold are x, y and ξ of weights 0, 0 and -1, respectively.

The first two coordinates are even, while the third one is odd

The base is $M = \mathbb{R}^2 = \{(x, y) \in \mathbb{R}^2\}$

The differential $\delta = xy \frac{\partial}{\partial \xi}$, i.e.

$$\delta(x) = \delta(y) = 0, \ \delta(\xi) = xy$$

The cohomology of the corresponding non-positively graded complex $(\mathcal{F}(\mathcal{M}), \delta)$ are concentrated in degree 0 and are equal to $\mathcal{F}(\mathbb{R}^2)/\langle xy \rangle$. We have obtained Koszul resolution of the singular set xy = 0.

Let \mathcal{M} be a \mathbb{Z} -graded supermanifold, I_+ and I_- be the ideals of $\mathcal{F}(\mathcal{M})$ generated by functions of positive and negative weighs, respectively.

Define $\mathcal{M}_{\pm} \subset \mathcal{M}$, such that $\mathcal{F}(\mathcal{M}_{\pm}) = \mathcal{F}(\mathcal{M})/I_{\mp}$

 \mathcal{M}_+ and \mathcal{M}_- is non-negatively and non-positively graded, respectively.

Assume that (\mathcal{M}, Q) is a \mathbb{Z} -graded Q-manifold.

 $Q(I_+) \subset I_+$, thus (\mathcal{M}_-, Q_-) is a Q-submanifold of \mathcal{M} , where Q_- is the restriction of Q onto \mathcal{M}_-

For an arbitrary (\mathcal{M}, Q) , $Q(I_-) \not\subset I_-$, hence, in general, \mathcal{M}_+ is a not Q-submanifold

Consider $\hat{I}_{-} = I_{-} + Q(I_{-})$. Then \hat{I}_{-} is stable under the action of Q and thus it defines a Q-submanifold (Σ_{+}, Q_{+}) , where Q_{+} is the restriction of Q onto Σ_{+}

Thereafter we will look only those Q-manifolds for which (\mathcal{M}_{-}, Q_{-}) is acyclic in all negative degrees (Koszul-Tate type)

PERTURBATION THEORY

Let M be a smooth manifold, $X \subset M$ be a singular subvariety which admits Koszul-Tate resolution $(\mathcal{M}_{-}, \delta)$, i.e.

$$H^0ig(\mathcal{F}(\mathcal{M}_-),\deltaig)=\mathcal{F}(X),\ H^{<0}ig(\mathcal{F}(\mathcal{M}_-),\deltaig)=0$$

Let \mathcal{M}_+ be a non-negatively graded manifold with a base M and Q_+ be a homological degree 1 vector field on $\Sigma_+ = \mathcal{M}_+|_X$. Then there exists a unique (up to an isomorphism) Q-manifold (\mathcal{M}, Q) , the non-positive part of which coincides with $(\mathcal{M}_-, \delta) =$ and the restriction of Q onto $\mathcal{M}_+|_X$ coincides with (Σ_+, Q_+) .