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• The talk is based on a series of papers publish jointly with
Vladimir Salnikov (La Rochelle), Camille Laurent-Gengoux
(Metz), Benoit Jubin (Luxembourg, Paris), and Norbert
Poncin (Luxembourg).

• The general theory of Z−-graded manifolds was developed in

Kotov, A., Salnikov, V. The category of Z-graded
manifolds: what happens if you do not stay positive,
Differential Geometry and its Applications 93, 102109
(2024)

• Classification theorems for smooth Z−-graded Q-manifolds
are explained and proven in

Kotov, A., Laurent-Gengoux, C., Salnikov, V. Normal
forms of Z-graded Q-manifolds, J. Geom. Phys. 191,
104908 (2023)



The last two articles in the list are devoted to graded and dg Lie
(super) groups.

Jubin, B., Kotov, A., Poncin, N., Salnikov, V. Differential
graded Lie groups and their differential graded Lie algebras.
Transformation Groups 27 497–523 (2022)

Kotov, A., Salnikov, V. Various instances of Harish-Chandra
pairs, J. Geom. Phys. 191, 104917 (2023)



A Z-graded manifold is a topological space X together with a
sheaf of Z−graded algebras, locally modelled as free algebras of
coordinates of degrees (weights) . . . ,−2,−1, 0, 1, 2.

For example:

coordinates ψl ζk x i ξa ηα

weights -2 -1 0 1 2

What is a free algebra in this context?



In the smooth case we require the free algebra to include:

• smooth functions of degree 0 coordinates;

• polynomials of coordinates of non-zero degree

The change of coordinates must preserve the
degree!

For example,

x i 7−→ x i + ξaζk + ψlηα, ξa 7−→ ξa, . . .

where the coordinate weights are the same as above.



The change of coordinates:

x i 7−→ x i + ξaζk + ψlηα, ξa 7−→ ξa, . . .

The weight table:

coordinates ψl ζk x i ξa ηα

weights -2 -1 0 1 2



Along with coordinate weights, we will also talk about their
parities, which tell us how the coordinates commute.

• The parity takes values in Z2;

• Often the parity of a coordinate is the reduction of its weight
modulo 2;

• But it is not the only possibility: we only require that, roughly
speaking, the set of coordinates decomposed into the subsets
of odd and even coordinates;

• odd coordinates anti-commute with each other (and thus their
squares are equal to 0), while even coordinates commute with
all other functions.



Let us compute the expression for cos(x i ):

cos(x i ) 7−→ cos
(
x i + ξaζk + ψlηα

)
=

= Taylor expansionw.r.t. ξa, ζk , ψl , ηα

• Using the described procedure we obtain polynomials of odd
coordinates (since they are nilpotent).

• However, with even coordinates a “problem” arises: we have
to assume a formal power series.



Another possibility, an alternative to formal series, is to consider
smooth functions of coordinates not only of zero, but also of
non-zero weight. Then we will arrive at another version of
Z-graded manifolds (“non-perturbative”, speaking in the physical
language of field theory). Although this approach is not the
subject of the talk, a few words will be said about it later.



Formal power series in the Z−graded context

Let W =
⊕

i∈Z\{0}Wi be a Z-graded vector space (W0 = 0).

Let M be a smooth manifold, U ⊂ M a coordinate chart with
smooth coordinates {x i}.

Let V be a free C∞(U)−module generated by W , i.e.

V =
⊕
i

Vi

where

Vi = C∞(U)⊗Wi



Define

A = SymC∞(U)(V ) = TC∞(U)(V )
/
⟨v1 ⊗ v2 − (−1)p1p2v2 ⊗ v1⟩

where p1, p2 are the parities of v1, v2, respectively.

A is a Z−graded supercommutative algebra (i.e. the elements of
pure parity commute w.r.t. their parities):

A =
⊕
i∈Z
Ai

where Ai consists of elements of weight i (we apply the standard
rule for the degree of the product of two elements - it’s the sum of
the degrees).



For any p ≥ 0, let F pA be the ideal of A generated by all elements
of degree ≥ p, that is,

F pA =

〈⊕
j≥p

Aj

〉

We obtain a decreasing filtration of A by ideals

A = F 0A ⊃ F 1A ⊃ F 2A ⊃ F 3A ⊃ . . .

For all p ≥ q, there is a canonical morphism of Z−graded
supercommutative algebras

A
/
F pA πp,q−−→ A

/
F qA



We obtain a projective system of algebras(
A
/
F pA, πp,q

)
Let

Â = lim←−A
/
F pA

be the projective (inverse) limit of this system. It is a Z−graded
supercommutative algebra.

Since

Ak =
⊕

i1+...+is=k

Vi1 ⊙ . . .⊙ Vis

even if each homogeneous component Vi has finite rank, the rank
of Ak need not be finite!



Decompose

V = V+

⊕
V−

where

V± =
⊕
±i>0

Vi

is the sum of elements of positive (negative) weight, respectively.

Define w± the positive and negative degree, such that

w = w+ − w−

where w+ and w− count ”positive” and ”negative” degrees
independently.



For example

coordinates ψl ζk ξa ηα

w+ 0 0 1 2
w− 2 1 0 0
w = w+ − w− -2 -1 1 2

For

f (x , ξ, η, ψ) = f+(x , ξ, η)f−(x , ζ, ψ)

one has

w+f = w(f+) w−f = −w(f−)



Consider
(
A
/
F pA

)
i
for some i .

(
A
/
F pA

)
i
has finite rank since w+ < p

•
(
A
/
F pA

)
i
is a trivial C∞(U) module of finite graded rank

(i.e. the rank of each homogeneous component is finite);

• the space of its sections is a sheaf over U;

• each Ai = lim←−
(
A
/
F pA

)
i
is a sheaf over U;

• A is a sheaf over U.



Global theory

Let M be a smooth manifold.

• Construct a presheaf of Z−graded supercommutative algebras
locally modelled by ŜymC∞(U)(V );

• It is a sheaf since it is obtained by gluing sheaves over an
open covering of M;

• Section of this sheaf are called functions on a Z−graded
smooth manifoldM with the base M:

Â = F(M)



N−graded Z−graded
We can allow polynomials of
positive degree variables whose
coefficients are smooth functions
of zero degree variables

This class of local functions is
not stable under the
homogeneous change of
coordinates

F0(M) = C∞(M) - this means
that there is a canonical
projectionM→ M

F0(M) ̸= C∞(M) - there is no
canonical projection of a general
Z−graded smooth manifold onto
its base

There is a canonical section
(”zero section”) of the above
projection map:

M→ M, M ⊂M

There is a canonical embedding
M ⊂M: Let I be an ideal
generated by all functions of
non-zero weight. Then

C∞(M) = F(M)/I



Supermanifolds: reminder

Let E → M be a vector bundle over a manifold (smooth, analytic,
algebraic). We associate to it a Z2−graded (or super) manifold
M = ΠE , such that the algebra of functions on it is

F(M) = ΓM(Λ•E ∗)

A supermanifold is characterized by its structure sheaf of
Z2−graded supercommutative algebras over a base M locally
modelled by ΓU(Λ

•E ∗), where U ⊂ M is an open chart and E → U
is a vector bundle.



• At least some supermanifolds (smooth, algebraic, analytic) are
constructed out of global vector bundles as above. They are
called split supermanifolds;

• Let I be the ideal of the structure sheaf generated by all odd
functions. Then

F(M) = F(M)
/
I

• The latter means that, as in the Z-graded case, there is a
canonical embedding M ⊂M;

• Just as in the general Z−graded case and unlike the
N−graded situation, there is no canonical projectionM→ M;

• We can canonically associate a split supermanifold to any
supermanifold using the scheme we describe below.



Define a vector bundle E over M as follows:

ΓM(E ∗) = I
/
I 2

One can easily show that I
/
I 2 is a locally free sheaf of

F(M) = F(M)
/
I modules, thus we obtained a vector bundle over

the base canonically associated to the supermanifold.

Hence there is another split supermanifoldM uniquely determined
byM.

Batchelor-Gawedzki theorem

In the smooth case
M≃M



Back to Z−graded manifolds

• We already know that

F(M) = F(M)
/
I

for the ideal I generated by all functions of non-zero weight.

• Define a Z−graded vector bundle E → M using the same
procedure as for a supermanifold:

ΓM(E ∗) = I
/
I 2

• LetM be another Z−graded manifold, such that

F(M) = ΓM

(
Ŝym(E ∗)

)



Z−graded Batchelor-Gawedzki theorem

In the smooth case
M≃M



”Non-perturbative” approach to Z−graded
manifolds

LetM be a Z−graded manifold. Then the algebra of functions is
a direct sum of its homogeneous components:

F(M) =
⊕
i∈Z
Fi (M)

Define an operator ϵ : F(M)→ F(M), such that

ϵ|Fi (M)
= i IdFi (M)

ϵ is a derivation of an even parity



This suggests another definition of a Z−graded supermanifold
(T. Voronov):

A Z−graded manifold is a supermanifold endowed with an even
derivation of functions (a vector field) ϵ and a local covering by
coordinate charts (U, {z i}), such that

ϵ
(
z i
)
= kiz

i

for some integers ki .

From the definition it follows that the zero locus M of ϵ is a
smooth supermanifold. This is exactly the base ofM.

Z−graded Borel lemma (Kotov, Salnikov)

For any formal (in the normal direction) power series f on M of
weight k there exists a smooth function f̃ onM of the same
weight k , the (normal) Taylor expansion of which is f .



Example

M = RP1 with the standard affine coordinate charts
(
U0, z

)
and(

U∞, u
)
with the relation z = 1

u on the double overlap U0 ∩ U∞.

Define ϵ = z ∂
∂z over U0; this vector field uniquely extends to U∞

as ϵ = −u ∂
∂u .

• The zero locus of ϵ is {0} ∪ {∞}. It is disconnected;
• The weights around the connected components of ϵ are

different: it is +1 around 0 and -1 around ∞.

In general, the weights in a neighborhood of a connected
component of the zero locus of ϵ are the same, while around
different components they can be different. The formal
neighborhood of a connected component is a Z−graded manifold
in the ”previous” sense.



Z−graded Lie algebras and Lie groups

A Z−graded Lie algebra is a Lie superalgebra g together with a
grading

g =
⊕
i∈Z

gi

such that the Lie bracket [, ] : g⊗ g→ g is a degree 0 operation, i.e.

[gi , gj ] ⊂ gi+j

The corresponding grading operator ϵ, defined such that

ϵ|gi
= i Idgi

is a degree 0 derivation of g, i.e. ϵ
[
x , y

]
=

[
ϵ(x), y

]
+
[
x , ϵ(y)

]



Let G be a Lie supergroup, such that its Lie superalgebra is g.
Suppose ϵG be a vector field on G , the infinitesimal counterpart of
which is ϵ.

This correspondence is an example of the van Est map. The
obtained vector field is multiplicative, i.e. the multiplication map
G × G → G is ϵ−equivariant.

Alternatively, one can illustrate it as follows: exp(tϵG ), t ∈ R is a
family of automorphisms of G , such that the induced family of
automorphisms of g is exp(tϵ).

A good definition of a Z-graded Lie group should be such that it is
the Lie group of a Z−graded Lie algebra!



Does the pair
(
G , ϵG

)
satisfy the definition of a Z-graded

supermanifold?

It was shown (Kotov-Salnikov) that a vector field ϵG has the
required form in a certain neighborhood of its zero locus, which is
the Lie subgroup corresponding to g0.

Question

Can we find an open covering of G by coordinate charts with
adapted coodrinates (of pure weights w.r.t. ϵG )?



Q-manifolds

A Q-manifold (A. Schwarz) is a Z− graded supermanifold endowed
with a homological degree 1 vector field. A Q-submanifold is a
graded immersed super submanifold such that the corresponding
immersion is a Q−morphism.

Examples of non-negatively graded Q-manifolds

• Lie algebroids (A. Vaintrob, Q-manifolds of degree 1); the
Q-field is given by the Lichnerowicz differential

• For Lie algebras the Lichnerowicz differential is the the
Chevalley-Eilenberg differential

• T [1]M for a graded supermanifold; the Q-field is the de Rham
operator

• Lie-infinity algebroids (general non-negatively or N−graded
Q-manifolds)



Examples of Q-manifolds

• L∞−algebras (viewed as formal pointed Q-manifolds)

• symplectic Q-manifolds (graded super symplectic manifolds
whose symplectic structure is invariant under Q)

• In particular, the symplectic degree 2 Q-manifold
corresponding to a Courant algebroid (D. Roytenberg, A.
Weinstein)

• The group-like objects in the category of Q-manifolds are dg
or Q-groups (B. Jubin, A.K., N. Poncin, V. Salnikov, 2019-22,
integration of dg Lie algebras to dg Lie groups)

• The differential graded resolution of a (possibly) singular
variety, an example of a non-positively graded Q-manifold



Example of a differential graded (Koszul)
resolution

Coordinates on the Z−graded supermanifold are x , y and ξ of
weights 0, 0 and -1, respectively.

The first two coordinates are even, while the third one is odd

The base is M = R2 = {(x , y) ∈ R2}

The differential δ = xy ∂
∂ξ , i.e.

δ
(
x
)
= δ

(
y
)
= 0, δ

(
ξ
)
= xy

The cohomology of the corresponding non-positively graded
complex

(
F(M), δ

)
are concentrated in degree 0 and are equal to

F(R2)
/
⟨xy⟩. We have obtained Koszul resolution of the singular

set xy = 0.



LetM be a Z−graded supermanifold, I+ and I− be the ideals of
F(M) generated by functions of positive and negative weighs,
respectively.

DefineM± ⊂M, such that F(M±) = F(M)
/
I∓

M+ andM− is non-negatively and non-positively graded,
respectively.

Assume that
(
M,Q

)
is a Z−graded Q-manifold.

Q
(
I+
)
⊂ I+, thus

(
M−,Q−

)
is a Q-submanifold ofM, where Q−

is the restriction of Q ontoM−

For an arbitrary
(
M,Q

)
, Q

(
I−
)
̸⊂ I−, hence, in general,M+ is a

not Q-submanifold



Consider Î− = I− + Q
(
I−
)
. Then Î− is stable under the action of

Q and thus it defines a Q-submanifold
(
Σ+,Q+

)
, where Q+ is the

restriction of Q onto Σ+

Thereafter we will look only those Q-manifolds for which(
M−,Q−

)
is acyclic in all negative degrees (Koszul-Tate type)

Perturbation theory

Let M be a smooth manifold, X ⊂ M be a singular subvariety
which admits Koszul-Tate resolution

(
M−, δ

)
, i.e.

H0
(
F(M−), δ

)
= F(X ), H<0

(
F(M−), δ

)
= 0

LetM+ be a non-negatively graded manifold with a base M and
Q+ be a homological degree 1 vector field on Σ+ =M+|X . Then
there exists a unique (up to an isomorphism) Q−manifold(
M,Q

)
, the non-positive part of which coincides with

(
M−, δ

)
=

and the restriction of Q ontoM+|X coincides with
(
Σ+,Q+

)
.


