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QUASI-EINSTEIN EQUATIONS

(M, g) closed n—dimensional Riemannian manifold, X € X(M).

1 1
Ric(g) = EXb ® X° — §L’Xg + g, m#0,\ constants. (QEE)

e m = 2. (M, g) spatial cross—section of extremal black hole horizon
with cosmological constant A ( Lewandowski—Pawtowski 2003,
Kunduri-Lucietti 2009, ...)

e m =1—n, A= 0. Levi-Civita connection of (M, g) projectivelly
equivalent to a connection with skew Ricci (local results:
Nurowski-Randall 2016).

e n=3m=1,A=0.(M,g) initial data for a static solution to
Lorentzian Einstein equations in (1, 3) signature (Bartnik—Tod 2005).

e m € N . Warped product Einstein metric on M x F. (Kim—Kim 2003)

G=g+ ef%gp, X’ = df, Ric(gr) = pgr, dim(F)=m.

e m = c0. Ricci solitons. (Hamilton 1988).
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EXTREME KERR HORIZON

Example: M = S2,m =2,A = 0.

a?(1+2%)dx?  4a®(1 — 2%)dg¢?

9= 1— 22 * 14 22 » (Kerr)
K’ —dI 1+ 22 1
b _ —
X0 = —5 = 5 where K = 53 D

where a > 0 is a constant, and —1 <z < 1,¢ € [0, 27].
@ Question: Is (Kerr) the unique solution to QEE with (m =2, A =0)
on a two—sphere?

o Lewandowski—-Pawtowski (2003), Kunduri-Lucietti (2009). Yes, if
there exists a Killing vector preserving X°.

o Jezierski—B. Kamiriski (2013), Chrusciel-Szybka—Tod (2018). Yes, in
the neighbourhood of (Kerr) in the space of solutions to QEE.

e MD-Lucietti (2023): Yes, with no additional assumptions (global
rigidity of extremal Kerr horizon) , and more is true.
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RIGIDITY OF EXTREME HORIZONS

Theorem (D-Lucietti 2023): Let (M, g) be an n-dimensional compact
Riemannian manifold without boundary admitting a non-gradient vector
field X such that QEE holds with m = 2. Then (M, g) admits a Killing
vector field K. Furthermore, if either (i) A <0, or (i) n =2 and X is
arbitrary, then [K, X]| = 0.
e Corollary 1: The extremal Kerr horizon (possibly with cosmological
constant) is the unique solution to m = 2 QEE on M = S2.
e Corollary 2: Any non-trivial vacuum near-horizon geometry with A < 0
and compact cross-sections admits an isometric action of SO(2,1)
with 3—dim orbits. (n + 2)-dimensional Lorentzian metric

1
g = r’Fdv?+2dvdr+2r X’ ©dv+g, where F = §|X|2—div(Xb)+>\.
e Proof: principal eigenvalues of elliptic operators (global), remarkable

tensor identity (local, valid if m = 2), integration by parts (global).
@ Alex Colling: Theorem valid for any A with n > 2.
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PROOF. STEP ONE: PRINCIPAL EIGENFUNCTION

Lemma. Given any vector field X on a compact Riemannian manifold
(M, g) there exists (a unique up to scale) smooth function I" > 0 such
that div(K) = 0, where

K’ :=TX’ +dT.

o Elliptic differential operator L) := —div(di + X*1). Krein-Rutman
theorem: M compact: there exists a principal eigenvalue 1 € R less
than or equal to the real part of any other eigenvalue, whose
associated eigenfunction ) is everywhere positive and unique up to
scale.

o M closed: Integrate L) = u) by parts, deduce = 0.

e K is divergence—free, so a candidate for a Killing vector. Have not
used QEE. Now use it!
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PROOF. STEP TWO: TENSOR IDENTITY

Proposition: Let K” := TX? + (dI'). For any solution to QEE with m = 2
the following identity holds

VaKyViKE" = ¥ (K'V(K)) = JK,AT = 1KV, K" = ATK, )

+ VuK? (|K|2+ —AT + vab+ KbeF+)\F>

e Proof: Substitute X” = I'"*(K” — dI') to QEE. Calculate. Check.
Correct errors. Check again. Does it also work for m # 27 No. Did it
really work for m = 2 (so many unexplainable cancellations)? Check

again. Yes. Remarkable ..
o Take T to be the principal eigenfunction, so that VK = 0. Stokes

theorem:
/ |Lkg|* volyr = / div(...)volps = 0.
M M

(M, g) Riemannian, so that Lxg = 0.
@ More work: L X = 0.
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Ric(g) = 2X’ @ X* — LLxg + A\g WITH m # 2

Focus on M compact without boundary, and n = 2.
Take the trace of QEE. Use Gauss—Bonnet: Let gys = genus(M).
Then

o If m>0and A >0, then gpy = 0.

o If m>0and A=0, then gpy <1 (= 1iff (M, g) is the flat torus).

o Ifm<0and A <0, then gpy > 1.

o If m<0and A=0, then gpy > 1 (= 1iff (M, g) is the flat torus).
Dobkowski-Rytko, Kaminski, Lewandowski, Szereszewski (2018): If
m =2 and gys > 0, then X = 0. Colling (2024): If gpy > 0 then
X =0.

@ ... so focus on gy; = 0. Find all regular solutions with a Killing vector.
First local, and then global which extend to S2 or RP2.
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QUASI-EINSTEIN ON SURFACES

Theorem (Colling, D, Kunduri, Lucietti 2024): Let (g, X) be a solution to
the m—quasi—Einstein equation on a two—dimensional surface M with d.X”
not identically zero, and a U(1) isometric action. Then

e Locally there exist coords. (z,¢), and a function B = B(z) s. t.

_ —1;.2 2 b —m
g = B ldz?+ Bdg?, X —$2+1<xdx—Bd¢), (B)
m m A2 +1
B ba(x? 4+ 1)"™/2 4 ¢(x? + 1)"™/2F(z) — (;1:'1), m# —1
x(b - )\arcsinh(yc))\/aﬁ2 +1) +e(z? + 1), m=—1.
where b, ¢ are constants and F(z) = F1< — 3 -1 —a:2) is the

hyper—geometric function.
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QUASI-EINSTEIN ON SURFACES

e Ifb=0and
A=0 A>0 A <0
A A
m >0 c>0 c> @ c> WL—_FIlco
m € (—1,0) - c> m+1 -
m=—1 - c>0 -
m< —1 - ce (ﬁ,o) -
where -
cp = min ——————
P T aa [F(a)]
and xg is the unique positive zero of F', then (B) smoothly extends to
S2.

o Conversely all solutions to QEE on S? with a U(1) isometric action

arise from (B) with b = 0, together with the restrictions on ¢ given
above.
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SOME ‘INGREDIENTS’ OF THE PROOF

e Lemma: Let (M, g, X) be a quasi-Einstein manifold of dimension n.
In harmonic coordinates the components of X and g are real analytic.
(Proof: Deturck—Kazdan elliptic theory).

e Proposition: Let (g, X') be a solution to the quasi-Einstein equations
on a two-dimensional connected surface M admitting a Killing vector
K. Then either [K, X]| =0 or g has constant curvature.

e Lemma: (not ours - folklore): The metric
g = B~ 'daz® + Bd¢?®, where B = B(x)

extends to a smooth metric on S? if and only if there exist adjacent
simple zeros x1 < x9 of B such that B > 0 for all z1 < = < x5 and
B'(z1) = —B'(z2) where ¢ ~ ¢ + p is periodically identified with
period p = 47 /| B’ (z;)].
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KAHLER POTENTIAL

Propositon: Locally there exist complex coordinates (¢, () and a function f
on M such that

g=4fcdCdl, X’ = —mfe(d¢/ fe +dC/ fe),

and QEE reduces to a single 4th order PDE

2 40

E(fcfg)Q(fggggfgg — fecefeee) + E(fgg)g(fc)z(fg)z

—(fee)? (Fze(FO? + fec(F)D) + (oo (fe(f) P fece + F2(f) P Fee)

+2(f,0) e fz = 0.
Proof of the main theorem: Use Propositions Kahler and Inheritance (U(1)
isometry extends to X)) to deduce (B). Solve the QEE for B = B(x). Use
the Folklore Lemma and hyper—geometric identities (thanks to Jan

Dereziniski!) to argue that B is even, and show that regular sols exist for
all ranges of m and X allowed by Gauss-Bonnet.
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m = —1 AND PROJECTIVE METRISABILITY

@ A projective structure [V] is an equivalence class of affine connections
the same unparametrised geodesics. A projective structure is called
o metrisable (M) if it contains a Levi—Civita connection.
o skew (S) if it contains a connection with totally skew Ricci tensor.
o Bryant-D-Eastwood (2009). Necessary and sufficient conditions for (M)
Randall (2014), Krynski (2014). Some necessary conditions for (S).

o Question (open): Find all projective structures which are (M&S).
Define an affine connection D=V —p X’ @ 1d — ¢ Id ® X".
Proposition: QEE on a surface are equivalent to the flatness of D iff
m=—1,p= —%,q = 1. (Proof: calculate).

Milnor (1954): If closed orientable surface M admits a flat
connection, then M is diffeomorphic to torus.

Corollary 1: (use Milnor+Gauss—Bonnet+ Proposition): The only
quasi—Einstein structure on a closed orientable surface with

m = —1, A = 0 is the flat torus.

This is trumped by Colling’s result (no—nontrivial ga; > 1 QEE)
... but implies Corollary 2: The only compact orientable projective

/1] 1
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SUMMARY

Quasi—Einstein structure (g, X) on a closed manifold M

o If m = 2 then a Killing vector must exist, and preserve X. Rigidity of
extreme Kerr horizon.

e If n=2,m # 2 we assume that a Killing vector exists, and find all
local solutions, and solutions which extend to M = S2.

e No non-trivial solutions if genus(M) > 0.
o QEE with n = 2 interpreted as a flat affine connection iff

" Thank You
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