Weakly-abelian gauge theories

Calin Lazaroiu

Horia Hulubei Institute, Bucharest and UNED, Madrid
(1) Weakly abelian Lie groups
(2) The classifying space of G
(3) Principal Γ-bundles
(4) Lifting the structure group of a principal Γ-bundle to G
(5) Classification of principal bundles with weakly Abelian structure group
(6) Connections
(7) Recap on principal connections
(8) The curvature maps and twisted Chern class for weakly Abelian structure group
(9) The gauge group of a principal bundle with weakly Abelian structure group
(10) Universal Chern-Weyl theory for weakly Abelian Lie groups

Definition

A Lie group G is called weakly Abelian if its Lie algebra \mathfrak{g} is Abelian.

Proposition

A Lie group G is weakly Abelian iff its connected component of the identity is an Abelian Lie group, which we denote by A.

Let G be weakly Abelian and $\Gamma \stackrel{\text { def. }}{=} \pi_{0}(G)$ be its group of components. We have an exact sequence:

$$
\begin{equation*}
1 \rightarrow A \xrightarrow{i} G \xrightarrow{q} \Gamma \rightarrow 1 . \tag{1}
\end{equation*}
$$

The conjugation action $\operatorname{Ad}_{G}: G \rightarrow \operatorname{Aut}(G)$ preserves A, on which it induces the restricted adjoint action $\operatorname{Ad}_{G}^{A}: G \rightarrow \operatorname{Aut}(A)$. The latter factors through q to the characteristic morphism $\rho: \Gamma \rightarrow \operatorname{Aut}(A)$:

$$
\operatorname{Ad}_{G}^{A}=\rho \circ q
$$

which depends only on the equivalence class of the extension (1). Let $\operatorname{Ext}_{\rho}(\Gamma, A)$ be the group of equivalence classes of extensions (1) with characteristic morphism ρ. This is isomorphic with $H^{2}\left(\Gamma, A_{\rho}\right)=\operatorname{Ext}_{\mathbb{Z}[\Gamma]}^{2}\left(\mathbb{Z}, A_{\rho}\right)$, where A_{ρ} is the Γ-module defined by ρ.

Definition

The extension class of G is the group cohomology class $e(G) \in H^{2}\left(\Gamma, A_{\rho}\right)$ defined by the extension sequence $1 \rightarrow A \xrightarrow{i} G \xrightarrow{q} \Gamma \rightarrow 1$.

The Lie group extension (1) gives a Lyndon-Hochschild-Serre spectral sequence in (Segal-Mitchison) cohomology of continuous groups, which in turn produces a five-term inflation-restriction exact sequence:

$$
\begin{equation*}
0 \rightarrow H^{1}\left(\Gamma, A_{\rho}\right) \xrightarrow{q^{*}} H^{1}\left(G, A_{\operatorname{Ad}_{G}^{A}}\right) \xrightarrow{i^{*}} H^{1}(A, A)^{\Gamma} \xrightarrow{\lambda_{G}} H^{2}\left(\Gamma, A_{\rho}\right) \xrightarrow{q^{*}} H^{2}\left(G, A_{\operatorname{Ad}_{G}^{A}}\right), \tag{2}
\end{equation*}
$$

where λ_{G} is the transgression morphism.

Proposition

We have:

$$
\begin{equation*}
e(G)=-\lambda_{G}\left(\operatorname{id}_{A}\right) \tag{3}
\end{equation*}
$$

where $\operatorname{id}_{A} \in \operatorname{Hom}(A, A)=H^{1}(A, A)^{\ulcorner }$is the identity morphism of A. In particular, we have $q^{*}(e(G))=0$.

The adjoint representation $\operatorname{Ad}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathfrak{g})$ of G factors through q to the reduced adjoint representation $\bar{\rho}: \Gamma \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathfrak{g})$:

$$
\begin{equation*}
\mathrm{Ad}=\bar{\rho} \circ q . \tag{4}
\end{equation*}
$$

Proposition

The exponential map $\exp _{G}:(\mathfrak{g},+) \rightarrow A$ of G is a surjective morphism of Lie groups. The Abelian group:

$$
\Lambda \stackrel{\text { def. }}{=} \operatorname{ker}\left(\exp _{G}\right)=\left\{\lambda \in \mathfrak{g} \mid \exp _{G}(\lambda)=1_{G}\right\}
$$

is a (generally non-full) lattice in \mathfrak{g} which is stable under G and Γ. The map $C_{G}: \Lambda \rightarrow \pi_{1}(G) \stackrel{\text { def. }}{=} \pi_{1}\left(A, 1_{G}\right)$ which sends $\lambda \in \Lambda$ to the homotopy class of the curve $c_{\lambda}:[0,1] \rightarrow A$ defined through:

$$
\begin{equation*}
c_{\lambda}(t) \stackrel{\text { def. }}{=} \exp _{G}(t \lambda) \forall t \in[0,1] \tag{5}
\end{equation*}
$$

is an isomorphism of groups whose inverse embeds $\pi_{1}(G)$ as the lattice $\Lambda \subset \mathfrak{g}$.

Definition

The lattice $\Lambda \subset \mathfrak{g}$ is called the exponential lattice of G. The morphism of groups $\operatorname{Ad}_{0}: G \rightarrow \operatorname{Aut}_{\mathbb{Z}}(\Lambda)$ obtained by corestricting Ad to Λ is called the corestricted adjoint representation of G. The morphism of groups $\rho_{0}: \Gamma \rightarrow \operatorname{Aut}_{\mathbb{Z}}(\Lambda)$ obtained by corestricting $\bar{\rho}$ to Λ is called the coefficient morphism of G, while the Γ-module $\Lambda_{\rho_{0}}$ is called the coefficient module.

We have:

$$
\operatorname{Ad}_{0}=\rho_{0} \circ q
$$

The coefficient crossed module $\mathcal{X}_{0}(G) \stackrel{\text { def. }}{=}\left(\Lambda, \Gamma, \mathbb{1}_{\Gamma}, \rho_{0}\right)$ is algebraically weakly-equivalent with the exponential crossed module $\mathcal{X}_{1}(G) \stackrel{\text { def. }}{=}\left(\mathfrak{g}, G, \exp _{G}, \mathrm{Ad}\right)$.

Proposition

The crossed module defined by $\Pi_{1}(G)$ is isomorphic with the exponential crossed module $\mathcal{X}_{1}(G)$ and hence the fundamental 2-group $\Pi_{1}(G)$ is isomorphic with the 2-group $\mathrm{X}_{1}(G)=G / / \exp _{G} \mathfrak{g}$ defined by $\mathcal{X}_{1}(G)$.

Let $\xi(G) \in H^{3}\left(\Gamma, \Lambda_{\rho_{0}}\right)$ be the Taylor obstruction class of G, which vanishes iff G admits a proper universal covering group. Given a topological group H and a morphism of topological groups $\alpha: H \rightarrow \Gamma$, the exponential sequence $1 \rightarrow \Lambda \xrightarrow{j} \mathfrak{g} \xrightarrow{\text { exp }} A \rightarrow 1$ induces a long exact sequence in group cohomology:

$$
\rightarrow H^{k}\left(H, \wedge_{\rho_{0} \circ \alpha}\right) \xrightarrow{j_{*}} H^{k}\left(H, \mathfrak{g}_{\bar{\rho} \circ \alpha}\right) \xrightarrow{\exp _{*}} H^{k}\left(H, A_{\rho \circ \alpha)} \xrightarrow{\Delta_{k}^{H}} H^{k+1}\left(H, \wedge_{\left.\rho_{0} \circ \alpha\right)}\right) \rightarrow \ldots,\right.
$$

where Δ_{k}^{H} are the connecting morphisms. The inflation-restriction sequences of the extension (1) for group cohomology with coefficients in A and Λ fit into a commutative diagram with exact rows:

Let $\epsilon(G) \stackrel{\text { def. }}{=} \Delta_{1}^{A}\left(\operatorname{id}_{A}\right) \in H^{2}(A, \Lambda)$ be the fundamental class of G.

Proposition

We have:

$$
\xi(G)=\Delta_{2}^{\ulcorner }(e(G))=-\mu_{G}(\epsilon(G))
$$

In particular, we have $q^{*}(\xi(G))=0$

Relation between $\xi(G)$ and the k-invariant of $B G$

To any principal Γ-bundle Q on a topological space X we associate the local coefficient system $\Lambda_{\rho_{0}}(Q) \stackrel{\text { def. }}{=} Q \times_{\rho_{0}} \Lambda$.

Proposition (Segal-Mitchison)

For any topological group morphism $H \xrightarrow{\alpha} \Gamma$, we have a natural isomorphism:

$$
\begin{equation*}
H^{*}\left(H, \Lambda_{\rho_{0} \circ \alpha}\right) \simeq H^{*}\left(B H, \Lambda_{\rho_{0}}\left(E_{\alpha} \Gamma\right)\right), \tag{7}
\end{equation*}
$$

where $E_{\alpha} \Gamma \rightarrow B H$ is the $B \alpha$-pull-back to $B H$ of the universal bundle $E \Gamma \rightarrow B \Gamma$.
In particular, the fundamental class $\epsilon(G) \in H^{2}\left(A, \Lambda_{\rho_{0}}\right)$ of G identifies with the fundamental class $\iota \in H^{2}(K(\Lambda, 2), \Lambda) \simeq[K(\Lambda, 2), K(\Lambda, 2)]$ of $K(\Lambda, 2)$.
The extension sequence (1) implies that the classifying space of G is an Eilenberg-MacLane fibration with fiber $B A \simeq K(\Lambda, 2)$ over the classifying space $B \Gamma \simeq K(\Gamma, 1)$ of $\Gamma:$

$$
\begin{equation*}
* \rightarrow B A \rightarrow B G \rightarrow B \Gamma \rightarrow * . \tag{8}
\end{equation*}
$$

Such fibrations are classified by an element $\kappa \in H^{3}\left(B \Gamma, \Lambda_{\rho_{0}}(E \Gamma)\right)$, which is the single k-invariant of $B G$.

Theorem

The obstruction class $\xi(G)$ identifies with κ under the isomorphism of groups (7).

The Leray-Serre spectral sequence for Λ-valued cohomology of the fibration (8) identifies with the Λ-valued Lyndon-Hochschild-Serre spectral sequence of (1). Since $H^{1}(K(\Lambda, 2), \Lambda)=0$, the Leray-Serre spectral sequence gives a five term exact sequence:

$$
\begin{equation*}
0 \rightarrow H^{2}\left(B \Gamma, \wedge_{\rho_{0}}(E \Gamma)\right) \rightarrow H^{2}\left(B G, \wedge_{\mathrm{Ad}_{0}}(E \Gamma)\right) \rightarrow H^{2}(B A, \Lambda) \xrightarrow{\delta} H^{3}\left(B \Gamma, \wedge_{\rho_{0}}(E \Gamma)\right) \rightarrow H^{3}\left(B G, \wedge_{\mathrm{Ad}_{0}}(E \Gamma)\right) \tag{9}
\end{equation*}
$$

which identifies with the inflation-restriction sequence on the bottom row of (6).

Corollary

We have:

$$
\kappa=-\delta(\iota)
$$

where $\delta: H^{2}(B A, \Lambda) \rightarrow H^{3}\left(B \Gamma, \Lambda_{\rho_{0}}(E \Gamma)\right)$ is the connecting morphism of (9).

Classification of principal bundles with weakly Abelian structure group

Let M be a d-manifold. To any principal Γ-bundle Q defined on M we associate two bundles of Abelian groups and a vector bundle, namely:

- The coefficient system $\Lambda(Q) \stackrel{\text { def. }}{=} Q \times{ }_{\rho_{0}} \Lambda$, where $\rho_{0}: \Gamma \rightarrow \operatorname{Aut}_{\mathbb{Z}}(\Lambda)$.
- The characteristic bundle $A(Q) \stackrel{\text { def. }}{=} Q \times{ }_{\rho} A$.
- The reduced adjoint bundle $\mathfrak{g}(Q)=Q \times_{\bar{\rho}} \mathfrak{g}$.

The natural flat connection of Q induces a flat Ehresmann connection on $A(Q)$ (whose parallel transport acts through isomorphisms of groups) and a linear flat connection \mathcal{D} on the vector bundle $\mathfrak{g}(Q)$. Notice that $\Lambda(Q)$ is a fiber sub-bundle of $\mathfrak{g}(Q)$ which is preserved by the parallel transport of \mathcal{D}.

Definition

The $\mathfrak{g}(Q)$-valued twisted de Rham cohomology space $H_{\mathcal{D}}^{k}(M, \mathfrak{g}(Q))$ is the k-th cohomology space of the twisted de Rham complex:

$$
0 \rightarrow \Omega^{0}(M, \mathfrak{g}(Q)) \xrightarrow{\mathrm{d}_{\mathcal{D}}} \Omega^{1}(M, \mathfrak{g}(Q)) \xrightarrow{\mathrm{d}_{\mathcal{D}}} \ldots \xrightarrow{\mathrm{d}_{\mathcal{D}}} \Omega^{d}(M, \mathfrak{g}(Q)) \rightarrow 0
$$

Proposition

There exists a natural isomorphism of graded vector spaces:

$$
H_{\mathcal{D}}^{*}(M, \mathfrak{g}(Q)) \simeq H^{*}\left(M, \mathcal{C}_{\text {flat }}^{\infty}(\mathfrak{g}(Q))\right)=H^{*}\left(M, \mathfrak{g}(Q)_{\mathrm{disc}}\right)
$$

The G-extension and G-obstruction class of Q

The exponential sequence $1 \rightarrow \Lambda \xrightarrow{j} \mathfrak{g} \xrightarrow{\text { exp }} A \rightarrow 1$ induces a commutative diagram with exact rows, where δ_{0} and δ are the connecting morphisms:

(10)

The sheaf $\mathcal{C}^{\infty}(\mathfrak{g}(Q))$ is acyclic, so $\delta: H^{k}\left(M, \mathcal{C}^{\infty}(A(Q))\right) \xrightarrow{\sim} H^{k+1}(M, \Lambda(Q))$ are isomorphisms for all $k \geq 1$ and we have $\delta_{0}=\delta \circ \iota_{*}, \quad \kappa_{*} \circ j_{0, *}=0$.

Definition

The G-extension class and G-obstruction class of Q are defined through:
$e_{G}(Q) \stackrel{\text { def. }}{=} f^{\sharp}(e(G)) \in H^{2}\left(M, A(Q)_{\text {disc }}\right), \xi_{G}(Q) \stackrel{\text { def. }}{=} f^{\sharp}(\xi(G)) \in H^{3}(M, \Lambda(Q))$,
where $f: M \rightarrow B \Gamma$ is a classifying map for Q. The smooth image of $e_{G}(Q)$ is defined through:

$$
e_{G}^{s}(Q) \stackrel{\text { def. }}{=} \iota_{*}\left(e_{G}(Q)\right) \in H^{2}\left(M, \mathcal{C}^{\infty}(A(Q)),\right.
$$

where $\iota_{*}: H^{2}\left(M, A(Q)_{\text {disc }}\right)=H^{*}\left(M, \mathcal{C}_{\text {flat }}^{\infty}(A(Q))\right) \rightarrow H^{2}\left(M, \mathcal{C}^{\infty}(A(Q))\right)$ is the morphism induced by the sheaf inclusion $\mathcal{C}_{\text {flat }}^{\infty}(A(Q)) \hookrightarrow \mathcal{C}^{\infty}(A(Q))$.

We have $\delta_{0}\left(e_{G}(Q)\right)=\delta\left(e_{G}^{s}(Q)\right)=\xi_{G}(Q)$.

Lifting the structure group of principal Г-bundles

Definition

A (G, q)-lift of structure group of Q is a pair (P, φ), where P is principal G-bundle defined on M and $\varphi: P \rightarrow Q$ is a based morphism of principal bundles above $q: G \rightarrow \Gamma$, i.e. a based isomorphism of principal Γ-bundles $\Gamma(P) \xrightarrow{\sim} Q$, where $\Gamma(P) \stackrel{\text { def. }}{=} P \times_{q} \Gamma$ is the discrete remnant of P.

Isomorphisms of (G, q)-lifts of structure group are defined obviously. Let $T_{G, q}(Q)$ be the set of isomorphism classes of (G, q)-lifts of Q.

Theorem

Q admits a (G, q)-lift of structure group iff $\xi_{G}(Q)=0$ i.e. iff $e_{G}^{s}(Q)=0$. In this case, $T_{G, q}(Q)$ is a torsor over $H^{2}(M, \Lambda(Q))$.

Definition

Suppose that Q admits a (G, q)-lift of structure group, thus $e_{G}(Q) \in \operatorname{ker} \delta_{0}=\exp _{0, *}\left(H_{\mathcal{D}}^{2}(M, \mathfrak{g}(Q))\right)$. Then the linear and affine characteristic lattices of Q are the lattices in $H_{\mathcal{D}}^{2}(M, \mathfrak{g}(Q))$ defined through:

$$
L_{0}(Q) \stackrel{\text { def. }}{=} j_{0, *}\left(H^{2}(M, \Lambda(Q))\right)=\exp _{0, *}^{-1}(\{0\}), \quad L(Q) \stackrel{\text { def. }}{=} \exp _{0, *}^{-1}\left(\left\{e_{G}(Q)\right\}\right)
$$

Define:
$\operatorname{Prin}_{\Gamma}^{0}(M) \stackrel{\text { def. }}{=}\left\{Q \in \operatorname{Prin}_{\Gamma}(M) \mid \xi_{G}(Q)=0\right\} \quad T_{\Gamma}^{G, q}(M) \stackrel{\text { def. }}{=} \sqcup_{Q \in \operatorname{Prin}{ }_{\Gamma}^{0}(M)} T_{G, q}(Q)$
The groupoid $\operatorname{Prin}_{\Gamma}^{0}(M)$ acts from the left on $T_{\Gamma}^{G, q}(M)$.

Theorem

There exists a natural bijection:

$$
\operatorname{Prin}_{G}(M) \xrightarrow{\sim} T_{\Gamma}^{G, q}(M) / \operatorname{Prin}_{\Gamma}^{0}(M) .
$$

Let P be a principal G-bundle defined on M.

Definition

The discrete remnant of P is the principal Γ-bundle $\Gamma(P) \stackrel{\text { def. }}{=} P \times_{q} \Gamma$.
We have $\operatorname{ad}(P)=\mathfrak{g}(\Gamma(P))$. Define:

$$
A(P) \stackrel{\text { def. }}{=} A(\Gamma(P))=P \times_{\mathrm{Ad}_{G}^{A}} A, \quad \Lambda(P) \stackrel{\text { def. }}{=} \Lambda(\Gamma(P))=P \times_{\mathrm{Ad}_{0}} \Lambda
$$

Notice that $\xi_{G}(\Gamma(P))=0$, hence $e_{G}^{s}(\Gamma(P))=0$.

Definition

The extension class of P is defined through:

$$
e(P) \stackrel{\text { def. }}{=} e_{G}(\Gamma(P)) \in H^{2}\left(M, \mathcal{C}_{\text {flat }}^{\infty}(A(P))\right)=H^{2}\left(M, A(P)_{\text {disc }}\right)
$$

The linear and affine characteristic lattices of P are those of $\Gamma(P)$:

$$
\begin{aligned}
& L_{0}(P) \stackrel{\text { def. }}{=} L_{0}(\Gamma(P))=j_{0, *}\left(H^{2}(M, \Lambda(P))\right)=\exp _{0, *}^{-1}(\{0\}) \subset H_{\mathcal{D}}^{2}(M, \operatorname{ad}(P)) \\
& L(P) \stackrel{\text { def. }}{=} L(\Gamma(P))=\exp _{0, *}^{-1}\left(\left\{e_{G}(P)\right\}\right) \subset H_{\mathcal{D}}^{2}(M, \operatorname{ad}(P))
\end{aligned}
$$

Proposition

All principal connections defined on P induce the same adjoint connection, which coincides with the distinguished flat connection \mathcal{D} of $\operatorname{ad}(P)=\mathfrak{g}(\Gamma(P))$.

Proposition

The adjoint curvature $\mathcal{V}_{\mathcal{A}} \in \Omega^{2}(M, \operatorname{ad}(P))$ of any principal connection $\mathcal{A} \in \operatorname{Conn}(P)$ satisfies:

$$
\mathrm{d}_{\mathcal{D}} \mathcal{V}_{\mathcal{A}}=0
$$

Moreover, the $\mathrm{d}_{\mathcal{D}}$-cohomology class $\mathfrak{c} \stackrel{\text { def. }}{=}\left[\mathcal{V}_{\mathcal{A}}\right]_{\mathrm{d}_{\mathcal{D}}} \in H_{\mathcal{D}}^{2}(M, \operatorname{ad}(P))$ does not depend on the choice of \mathcal{A} in $\operatorname{Conn}(P)$.

Definition

The twisted de Rham cohomology class $\mathfrak{c}(P) \in H_{\mathcal{D}}^{2}(M, \operatorname{ad}(P))$ is called the real twisted Chern class of P.

Theorem

For any principal G-bundle P on M, we have $\mathfrak{c}(P) \in L(P)$. Given a principal Γ-bundle Q on M which admits (G, q)-lifts of structure group, the map:

$$
T_{G, q}(Q) \ni P \rightarrow \mathfrak{c}(P) \in L(Q)
$$

is a morphism of torsors over the group epimorphism
$j_{0, *}: H^{2}(M, \Lambda(Q)) \rightarrow L_{0}(Q)$.
Notice that $j_{0, *}$ kills torsion, so it need not be injective. When $j_{0, *}$ is not injective, the class $\mathfrak{c}(P) \in L(Q)$ fails to classiy principal weakly-Abelian bundles.

Remark. Suppose that $e_{G}(Q)=0$, so $L=L_{0}$ and $\xi_{G}(Q)=0$. In this case, $T_{G, q}(Q)$ identifies with the Abelian group $H^{2}(M, \Lambda(Q))$ and (G, q)-lifts (P, φ) of Q are classified by the integral twisted Chern class $c(P) \in H^{2}(M, \Lambda(Q))$ of P, which satisfies $j_{0, *}(c(P))=\mathfrak{c}(P)$. This occurs for example when G is a split extension of Γ by A (i.e. when $G \simeq A \rtimes_{\rho} \Gamma$). Then $e(G)=0$, hence $e_{G}(Q)=0$ for any principal Γ-bundle Q. In that case, any principal Γ-bundle admits (G, q)-extensions of structure group and principal G-bundles P are classified by the pair $(\Gamma(P), c(P))$. This occurs for the symplectic Abelian gauge theories which enter the formulation of $N=1$ supergravity in four dimensions.

Recap on principal connections

Let:

- G be a Lie group with Lie algebra \mathfrak{g}
- Ad : $G \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathfrak{g})$ be the adjoint representation of G.
- $p: P \rightarrow M$ a principal G-bundle with projection p on the manifold M
- $V P \subset T P$ be the vertical bundle of P.
- $\operatorname{ad}(P) \stackrel{\text { def. }}{=} P \times_{\text {Ad }} \mathfrak{g}$ be the adjoint bundle of P.

The space of equivariant \mathfrak{g}-valued forms defined on P :

$$
\Omega^{*}(P, \mathfrak{g})^{G} \stackrel{\text { def. }}{=}\left\{\eta \in \Omega^{*}(P, \mathfrak{g}) \mid r_{g}^{*}(\eta)=\operatorname{Ad}(g)^{-1} \eta\right\}
$$

contains the subspace of horizontal forms:

$$
\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \stackrel{\text { def. }}{=}\left\{\eta \in \Omega^{*}(P, \mathfrak{g})^{G} \mid \iota x \eta=0 \quad \forall X \in \mathcal{C}^{\infty}(P, V P)\right\}
$$

We have mutually inverse isomorphisms of graded vector spaces:

$$
\Omega^{*}(M, \operatorname{ad}(P)) \underset{\varphi_{P}}{\stackrel{p^{*}}{\rightleftarrows}} \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) .
$$

Principal connections on P form an affine space modeled on $\Omega_{\mathrm{Ad}}^{1}(P, \mathfrak{g})$:

$$
\operatorname{Conn}(P) \stackrel{\text { def. }}{=}\left\{\mathcal{A} \in \Omega^{1}(P, \mathfrak{g})^{G} \mid \iota \iota_{v} \mathcal{A}=v \quad \forall p \in P \quad \forall v \in \mathfrak{g}\right\}
$$

where $X_{v} \in \mathcal{C}^{\infty}(P, V P)$ is the vertical vector field defined by $y_{c} \in \mathfrak{a}$.

Let $\mathrm{d}_{\mathcal{A}}: \Omega^{*}(P, \mathfrak{g}) \rightarrow \Omega^{*}(P, \mathfrak{g})$ be the covariant differential of $\mathcal{A} \in \operatorname{Conn}(P)$.

Definition

The principal curvature of \mathcal{A} is:

$$
\Omega_{\mathcal{A}} \stackrel{\text { def. }}{=} \mathrm{d}_{\mathcal{A}} \mathcal{A}=\mathrm{d} \mathcal{A}+\frac{1}{2}[\mathcal{A}, \mathcal{A}]_{\wedge} \in \Omega_{\mathrm{Ad}}^{2}(P, \mathfrak{g})
$$

The adjoint curvature of \mathcal{A} is:

$$
\mathcal{V}_{\mathcal{A}} \stackrel{\text { def. }}{=} \varphi_{P}\left(\Omega_{\mathcal{A}}\right) \in \Omega^{2}(M, \operatorname{ad}(P))
$$

The principal curvature satisfies the Bianchi identity:

$$
\mathrm{d}_{\mathcal{A}} \Omega_{\mathcal{A}}=0
$$

The principal and adjoint curvature maps $\Omega: \operatorname{Conn}(P) \rightarrow \Omega_{\text {Ad }}^{2}(P, \mathfrak{g})$ and $\mathcal{V}: \operatorname{Conn}(P) \rightarrow \Omega^{2}(M, \operatorname{ad}(P))$ are defined through:

$$
\Omega(\mathcal{A}) \stackrel{\text { def. }}{=} \Omega_{\mathcal{A}}, \quad \mathcal{V}(\mathcal{A}) \stackrel{\text { def. }}{=} \mathcal{V}_{\mathcal{A}} \forall \mathcal{A} \in \operatorname{Conn}(P)
$$

We have a commutative diagram:

Let $\mathcal{D}_{\mathcal{A}}: \Gamma(M, \operatorname{ad}(P)) \rightarrow \Omega^{1}(M, \operatorname{ad}(P))$ be the linear connection induced by \mathcal{A} on $\operatorname{ad}(P)$ and $\mathrm{d}_{\mathcal{D}_{\mathcal{A}}} f: \Omega^{*}(M, \operatorname{ad}(P)) \rightarrow \Omega^{*}(M, \operatorname{ad}(P))$ its differential. We have a commutative diagram:

The curvature maps for weakly Abelian structure group
Suppose that G is a weakly Abelian Lie group.

Proposition

The following statements hold:
(1) For any $\mathcal{A} \in \operatorname{Conn}(P)$, we have $\Omega_{\mathcal{A}}=\mathrm{d} \mathcal{A}$ and the Bianchi identity reduces to $\mathrm{d} \Omega_{\mathcal{A}}=0$. Thus Ω is an affine map with linear part:

$$
\left.\mathrm{d}\right|_{\operatorname{Conn}(P)}: \operatorname{Conn}(P) \rightarrow \Omega_{\mathrm{Ad}}^{2}(P, \mathfrak{g})
$$

(2) We have:

$$
\begin{equation*}
\left.\mathrm{d}_{\mathcal{A}}\right|_{\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})}=\left.\mathrm{d}\right|_{\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})}: \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \rightarrow \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \tag{11}
\end{equation*}
$$

(3) All principal connections $\mathcal{A} \in \operatorname{Conn}(P)$ induce the same linear connection $\mathcal{D}_{\mathcal{A}}$ on the adjoint bundle $\operatorname{ad}(P)$ (which we denote by \mathcal{D}) and this induced connection is flat. Moreover, the adjoint curvature satisfies:

$$
\mathrm{d}_{\mathcal{D}} \mathcal{V}_{\mathcal{A}}=0 \quad \forall \mathcal{A} \in \operatorname{Conn}(P)
$$

and $\varphi_{P}:\left(\Omega_{\mathrm{Ad}}(P, \mathfrak{g}), \mathrm{d}\right) \rightarrow\left(\Omega(M, \operatorname{ad}(P)), \mathrm{d}_{\mathcal{D}}\right)$ is an isomorphism of complexes.
(9) \mathcal{D} coincides with the flat connection induced on $\operatorname{ad}(P)=\Gamma(P) \times_{\bar{\rho}} \mathfrak{g}$ by the flat connection of the discrete remnant bundle $\Gamma(P) \stackrel{\text { def. }}{=} P \times{ }_{q} \Gamma$.

Proposition

The twisted de Rham cohomology class of $\mathcal{V}_{\mathcal{A}}$:

$$
\mathfrak{c}(P) \stackrel{\text { def. }}{=}\left[\mathcal{V}_{\mathcal{A}}\right]_{\mathcal{D}}=\mathcal{V}_{\mathcal{A}}+\Omega_{\mathrm{d}_{\mathcal{D}}-\mathrm{ex}}^{2}(M, \operatorname{ad}(P)) \in H_{\mathcal{D}}^{2}(M, \operatorname{ad}(P))
$$

does not depend on the choice of principal connection $\mathcal{A} \in \operatorname{Conn}(P)$. Viewing $\mathfrak{c}(P)$ as an affine space modeled on the vector space $\Omega_{\mathrm{d}_{\mathcal{D}}-\mathrm{ex}}^{2}(M, \operatorname{ad}(P))$, the corestricted adjoint curvature map $\mathcal{V}: \operatorname{Conn}(P) \rightarrow \mathfrak{c}(P)$ is a surjective affine map with linear part given by:

$$
\left.\mathrm{d}_{\mathcal{D}} \circ \varphi_{\mathrm{P}}\right|_{\Omega^{1}(P, \mathfrak{g})}=\left.\varphi_{P} \circ \mathrm{~d}\right|_{\Omega^{1}(P, \mathfrak{g})}: \Omega^{1}(P, \mathfrak{g}) \rightarrow \Omega_{\mathrm{d}_{\mathcal{D}}-\mathrm{ex}}^{2}(M, \operatorname{ad}(P)) .
$$

Corollary

$\mathcal{V}: \operatorname{Conn}(P) \rightarrow \mathfrak{c}(P)$ is an affine fibration with fiber at $\omega \in \mathfrak{c}(P)$ given by:

$$
\begin{equation*}
\operatorname{Conn}_{\omega}(P) \stackrel{\text { def. }}{=}\left\{\mathcal{A} \in \operatorname{Conn}(P) \mid \mathcal{V}_{\mathcal{A}}=\omega\right\} \tag{12}
\end{equation*}
$$

which is an affine space modeled on the vector space:

$$
\Omega_{\mathrm{Ad}, \mathrm{cl}}^{1}(P, \mathfrak{g}) \stackrel{\text { def. }}{=} \operatorname{ker}\left(\mathrm{d}: \Omega_{\mathrm{Ad}}^{1}(M, \mathfrak{g}) \rightarrow \Omega_{\mathrm{Ad}}^{2}(M, \mathfrak{g})\right) \stackrel{\varphi}{\mathcal{P}} \Omega_{\mathrm{d}_{\mathcal{D}}-\mathrm{cl}}^{1}(M, \operatorname{ad}(P)) .
$$

Definition

The gauge group of P is the group $\operatorname{Aut}_{b}(P)$ of based automorphisms of P, whose elements are called (global) gauge transformations of P.

Let Aut $_{b}(\operatorname{ad}(P))$ be the group of based automorphisms of $\operatorname{ad}(P)$.

Definition

The adjoint representation of $\operatorname{Aut}_{b}(P)$ is the linear representation induced on global sections of $\operatorname{ad}(P)$ by the morphism of groups $\operatorname{ad}_{P}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}_{b}(\operatorname{ad}(P))$ defined through:

$$
\operatorname{ad}_{P}(\psi)([p, v]) \stackrel{\text { def. }}{=}[\psi(p), v] \quad \forall \psi \in \operatorname{Aut}_{b}(P) \quad \forall p \in P \quad \forall v \in \mathfrak{g}
$$

The pullback representation of $\operatorname{Aut}_{b}(P)$ is the linear representation $\mathfrak{R}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}\left(\Omega^{*}(P, \mathfrak{g})\right)$ defined through:

$$
\mathfrak{R}(\psi)(\omega) \stackrel{\text { def. }}{=}\left(\psi^{-1}\right)^{*}(\omega) \quad \forall \psi \in \operatorname{Aut}_{b}(P) \quad \forall \omega \in \Omega^{*}(P, \mathfrak{g})
$$

Remark. Suppose that M is compact. Then $\operatorname{Aut}_{b}(P)$ is an infinite-dimensional Fréchet-Lie group whose Lie algebra identifies with $\mathcal{C}^{\infty}(M, \operatorname{ad}(P))$. In this case, the linear action induced by ad_{P} on $\mathcal{C}^{\infty}\left(M, \operatorname{Ad}_{G}(P)\right)$ identifies with the adjoint representation of $\operatorname{Aut}_{b}(P)$ as a Lie group (hence our terminology),

The pullback and adjoint representations of the gauge group
The pullback representation preserves $\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})$, on which it restricts to a representation $\mathfrak{R}_{\mathrm{Ad}}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}\left(\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})\right)$.

Proposition

The following diagram commutes:

$$
\begin{gathered}
\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \xrightarrow{\mathcal{R}_{\mathrm{Ad}}(\psi)} \Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g}) \\
\downarrow_{\varphi_{P}} \\
\downarrow \\
\Omega^{*}(M, \operatorname{ad}(P)) \xrightarrow{\operatorname{add}_{P}(\psi)} \Omega^{*}(M, \operatorname{ad}(P))
\end{gathered}
$$

Proposition

For any $\psi \in \operatorname{Aut}_{b}(P)$, we have:

$$
\mathrm{d} \circ \mathfrak{R}_{\mathrm{Ad}}(\psi)=\left.\mathfrak{R}_{\mathrm{Ad}}(\psi) \circ \mathrm{d}\right|_{\Omega_{\mathrm{Ad}}^{*}(P, \mathfrak{g})}, \quad \mathrm{d}_{\mathcal{D}} \circ \operatorname{ad}_{P}(\psi)=\operatorname{ad} p(\psi) \circ \mathrm{d}_{\mathcal{D}} .
$$

Thus \Re_{Ad} and $\mathrm{ad} p$ induce linear representations of the gauge group on the spaces $H_{\mathrm{d}}^{*}\left(\Omega_{\mathrm{Ad}}(P, \mathfrak{g})\right)$ and $H_{\mathrm{d}_{\mathcal{D}}}^{*}(M, \operatorname{ad}(P))$, which are equivalent through the isomorphism $\varphi_{P_{*}}: H_{d}^{*}\left(\Omega_{\mathrm{Ad}}(P, \mathfrak{g})\right) \xrightarrow{\sim} H_{\mathrm{d}_{\mathcal{D}}}^{*}(M, \operatorname{ad}(P))$ induced by φ p.

The pull-back action preserves the affine space $\operatorname{Conn}(P) \subset \Omega^{1}(P, \mathfrak{g})^{G}$, on which it restricts to an affine action $\mathfrak{R}_{c}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aff}(\operatorname{Conn}(P))$ with linear part:

$$
\left.\mathfrak{R}_{\mathrm{Ad}}^{1} \stackrel{\text { def. }}{=} \mathfrak{R}_{\mathrm{Ad}}\right|_{\Omega_{\mathrm{Ad}}^{1}(P, \mathfrak{g})}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}\left(\Omega_{\mathrm{Ad}}^{1}(P, \mathfrak{g})\right)
$$

Proposition

The principal and adjoint curvature maps of P are gauge-equivariant:

$$
\Omega \circ \Re_{c}(\psi)=\Re_{\mathrm{Ad}}(\psi) \circ \Omega \text { and } \mathcal{V} \circ \Re_{c}(\psi)=\operatorname{ad}_{P}(\psi) \circ \mathcal{V} \quad \forall \psi \in \operatorname{Aut}_{b}(P) .
$$

Moreover, ad P preserves the affine subspace $\mathfrak{c}(P) \subset \Omega_{d_{\mathcal{D}^{-c l}}}^{2}(M, \operatorname{ad}(P))$, on which it acts through affine transformations with linear part:
$\left.\operatorname{ad}_{P}(\psi)\right|_{\Omega_{\mathrm{d}_{\mathcal{D}^{-\mathrm{ex}}}^{2}}^{2}(M, \operatorname{ad}(P))}: \Omega_{\mathrm{d}_{\mathcal{D}^{-}}}^{2}(M, \operatorname{ad}(P)) \rightarrow \Omega_{\mathrm{d}_{\mathcal{D}^{-}}{ }^{\text {ex }}}^{2}(M, \operatorname{ad}(P)) \forall \psi \in \operatorname{Aut}_{b}(P)$
In particular, the affine fibration $\mathcal{V}: \operatorname{Conn}(P) \rightarrow \mathfrak{c}(P)$ is equivariant with respect to the affine actions of $\operatorname{Aut}_{b}(P)$ on $\operatorname{Conn}(P)$ and $\mathfrak{c}(P)$.

Discrete gauge transformations

The discrete remnant $\Gamma(P) \stackrel{\text { def. }}{=} P \times_{q} \Gamma$ comes with a natural (G, q)-lift of structure group $\Phi_{P}: P \rightarrow \Gamma(P)$.

Definition

The group $\mathrm{Aut}_{b}(\Gamma(P))$ is called the discrete gauge group of P and its elements are called discrete gauge transformations of P.

Any $\psi \in \operatorname{Aut}_{b}(P)$ induces an automorphism $Q_{P}(\psi) \stackrel{\text { def. }}{=} \bar{\psi} \in \operatorname{Aut}_{b}(\Gamma(P))$ by:

$$
\bar{\psi}([p, \gamma])=[\psi(p), \gamma] \quad \forall[p, \gamma] \in \Gamma(P)
$$

This fits into a commutative diagram:

The map $Q_{P}: \operatorname{Aut}_{b}(P) \rightarrow \operatorname{Aut}_{b}(\Gamma(P))$ is a morphism of groups.

Definition

The discrete gauge transformation $Q_{P}(\psi)=\bar{\psi} \in \operatorname{Aut}_{b}(\Gamma(P))$ is called the discrete remnant of the gauge transformation $\psi \in \operatorname{Aut}_{b}(P)$.

Let $\operatorname{ad}_{\Gamma(P)}: \operatorname{Aut}_{b}(\Gamma(P)) \rightarrow \operatorname{Aut}_{b}(\operatorname{ad}(P))$ be the morphism of groups given by:

$$
\operatorname{ad}_{\Gamma(P)}(\chi)\left([p, v]_{\mathrm{Ad}}\right) \stackrel{\text { def. }}{=}\left[\chi\left(\Phi_{P}(p)\right), v\right]_{\bar{\rho}}=\left[p, \bar{\rho}\left(h_{\chi}(p)\right)(v)\right]_{\mathrm{Ad}} \forall p \in P \forall v \in \mathfrak{g}
$$

with $\chi \in \operatorname{Aut}_{b}(\Gamma(P))$, where $\bar{\rho}: \Gamma \rightarrow \operatorname{Aut}(\mathfrak{g})$ is the reduced adjoint representation of G and we used the presentation $\operatorname{ad}(P)=\Gamma(P) \times_{\bar{\rho}} \mathfrak{g}$.

Proposition

We have $\operatorname{ad}_{P}=\operatorname{ad}_{\Gamma(P)} \circ Q_{P}$, i.e.:

$$
\operatorname{ad}_{P}(\psi)=\operatorname{ad}_{\Gamma(P)}(\bar{\psi}) \quad \forall \psi \in \operatorname{Aut}_{b}(P)
$$

Hence $\operatorname{ad}_{P}(\psi)$ depends only on the discrete remnant of ψ.

Let $N G$ be the nerve of G (the nerve of the one-object groupoid defined by G):

- $N_{n} G=G^{\times n} \quad \forall n \geq 1, \quad N_{0} G=\left\{1_{G}\right\}$
- face maps $\epsilon_{i}:=\epsilon_{i}^{n}: N_{n} G \rightarrow N_{n-1} G(n \geq 1)$ and degeneracy maps $\eta^{i}:=\eta_{i}^{n}: N_{n} G \rightarrow N_{n+1} G(n \geq 0)$ given by:

$$
\begin{aligned}
& \epsilon_{0}^{1}(g)=\epsilon_{1}^{1}(g)=1_{G}, \eta_{0}^{0}\left(1_{G}\right)=1_{G} \\
& \epsilon_{i}^{n}\left(g_{1}, \ldots, g_{n}\right) \stackrel{\text { def. }}{=} \begin{cases}\left(g_{2}, \ldots, g_{n}\right) & i=0 \\
\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots g_{n}\right) & 1 \leq i \leq n-1 \\
\left(g_{1}, \ldots, g_{n-1}\right) & i=n\end{cases} \\
& \eta_{i}^{n}\left(g_{1}, \ldots, g_{n}\right) \stackrel{\text { def. }}{=} \begin{cases}\left(1_{G}, g_{1}, \ldots, g_{n}\right) & i=0 \\
\left(g_{1}, \ldots, g_{i-1}, 1_{G}, g_{i}, \ldots, g_{n}\right) & 1 \leq i \leq n-1 \\
\left(g_{1}, \ldots, g_{n}, 1_{G}\right) & i=n\end{cases}
\end{aligned}
$$

for all $n \geq 1$.
Let $\|\|:$ sTop \rightarrow Top be the fat realization functor, where sTop is the category of simplicial spaces and maps thereof. Then $\|N G\|$ is homotopy-equivalent with BG. Notice that the fat model $\|N G\|$ of $\mathrm{B} G$ differs up to homotopy from the Segal model (which uses the thin realization functor

Definition

The simplicial de Rham bicomplex $\Omega(N G)$ has components $\Omega^{p, q}(N G) \stackrel{\text { def. }}{=} \Omega^{q}\left(N_{p} G\right)$ and differentials:

$$
\begin{aligned}
& \delta^{\prime}=\sum_{i=0}^{p+1}(-1)^{i}\left(\epsilon_{i}^{p+1}\right)^{*}: \Omega^{p, q}(N G) \rightarrow \Omega^{p+1, q}(N G) \\
& \delta^{\prime \prime}=(-1)^{p} \mathrm{~d}_{N_{p} G}: \Omega^{p, q}(N G) \rightarrow \Omega^{p, q+1}(N G) .
\end{aligned}
$$

Let $H^{*}(\Omega(N G))$ be the total cohomology of this bicomplex, which is a graded ring under the obvious operation:

$$
\therefore: \Omega^{k_{1}}\left(N_{q_{1}} G\right) \times \Omega^{k_{2}}\left(N_{q_{2}} G\right) \rightarrow \Omega^{k_{1}+k_{2}}\left(N_{q_{1}+q_{2}} G\right) .
$$

$H^{*}(\Omega(N G))$ is computed by the spectral sequence of the vertical filtration $\Omega(N G)_{q} \stackrel{\text { def. }}{=} \oplus_{j \geq q} \oplus_{i \geq 0} \Omega^{i, j}(N G)$. The first page is $E_{1}^{p, q}=H_{\delta^{\prime}}^{q}\left(\Omega^{*, p}(N G)\right)=H_{\delta^{\prime}}^{q}\left(\Omega^{p}\left(N_{*} G\right)\right)$ with differential $\delta_{1}=\delta^{\prime \prime}: E_{1}^{p, q} \rightarrow E_{1}^{p+1, q}$, while the second page is $E_{2}^{p, q}=H_{\delta^{\prime \prime}}^{p}\left(H_{\delta^{\prime}}^{q}(\Omega(N G))\right)$.

Theorem (Bott, Shulman, Stasheff)

There exists an isomorphism of graded rings $\zeta: H^{*}(\Omega(N G)) \xrightarrow{\sim} H^{*}(B G, \mathbb{R})$ and isomorphisms of vector spaces:

$$
\beta_{p-q, q}: H^{p-q}\left(G, S^{q}\left(\mathfrak{g}^{*}\right)\right) \xrightarrow{\sim} H_{\delta^{\prime}}^{p}\left(\Omega^{q}(N G)\right)=E_{1}^{q, p} \quad \forall p \geq q .
$$

Moreover, we have $E_{1}^{q, p}=0$ for $p<q$.
Since $\left.\delta_{1}\right|_{E_{1}^{q, q}}=0$, we have epimorphisms $E_{1}^{q, q} \rightarrow E_{2}^{q, q} \rightarrow E_{3}^{q, q} \rightarrow \ldots$ and an edge morphism $e_{q}: E_{1}^{q, q} \rightarrow E_{\infty}^{q, q} \subset H^{2 q}(\Omega(N G))$. Since $H^{0}\left(G, S^{q}\left(\mathfrak{g}^{*}\right)\right)=S^{q}\left(\mathfrak{g}^{*}\right)^{G}=S^{q}\left(\mathfrak{g}^{*}\right)^{\ulcorner }$, we have $\beta_{0, q}: S^{q}\left(\mathfrak{g}^{*}\right)^{\ulcorner } \xrightarrow{\sim} E_{1}^{q, q}$.

Definition

The simplicial and universal Chern-Weil morphisms of G are the morphisms of graded rings:

$$
\beta \stackrel{\text { def. }}{=} \oplus_{q \geq 0} e_{q} \circ \beta_{0, q}: S^{*}\left(\mathfrak{g}[2]^{\vee}\right)^{\ulcorner } \xrightarrow{\sim} H^{\text {even }}(\Omega(N G)) .
$$

and:

$$
\psi \stackrel{\text { def. }}{=} \zeta \circ \beta: S^{*}\left(\mathfrak{g}[2]^{\vee}\right)^{\ulcorner } \rightarrow H^{\text {even }}(B G) .
$$

Let $\theta \in \Omega^{1}(G, \mathfrak{g})$ be the left Maurer-Cartan form of G, which is closed by the MC equation. For any $q \geq 1$ and $i=1, \ldots, q$, let $\theta_{i}^{(q)} \stackrel{\text { def. }}{=}\left(\pi_{i}^{q}\right)^{*}(\theta) \in \Omega^{1}\left(N_{q} G\right)$, where $\pi_{i}^{q}: N_{q} G=G^{\times q} \rightarrow G$ is the i-th projection.

Proposition

For any $T \in S^{q}\left(\mathfrak{g}^{*}\right)^{\ulcorner }$, the form $T\left(\theta_{1}^{(q)} \AA \ldots \wedge_{q}^{(q)}\right) \in \Omega^{q}\left(N_{q} G\right)$ is δ-closed and we have:

$$
\beta(T)=\left[T\left(\theta_{1}^{(q)} \wedge^{\circ} \ldots \wedge^{(q)}\right)\right]_{\delta} \in H^{\text {even }}(\Omega(N G)) .
$$

Theorem (Cartan, Bott)

Suppose that G is compact. Then the following statements hold:

- $H^{p}\left(G, S^{q}\left(\mathfrak{g}^{*}\right)\right)=0$ for $p>0$
- The spectral sequence E_{*} collapses at the first page, giving isomorphisms $e_{q}: E_{1}^{q, q} \xrightarrow{\sim} H^{2 q}(\Omega(N G))$.
- The simplicial and universal Chern-Weil morphisms are isomorphisms of graded rings.

The twisted simplicial de Rham bicomplex
Let $\bar{N} G \rightarrow N G$ be the simplicial universal bundle and $\overline{\mathcal{D}}$ be the simplicial flat connection on the simplicial vector bundle $\operatorname{ad}(\bar{N} G)$.

Definition

The twisted simplicial de Rham bicomplex $\Omega(N G, \operatorname{ad}(\bar{N} G))$ has components $\Omega^{p, q}(N G, \operatorname{ad}(\bar{N} G)) \stackrel{\text { def. }}{=} \Omega^{q}\left(N_{p} G, \operatorname{ad}\left(\bar{N}_{p} G\right)\right)$ and differentials:

$$
\begin{aligned}
& \delta_{\mathrm{ad}}^{\prime}=\sum_{i=0}^{p+1}(-1)^{i}\left(\epsilon_{i}^{p+1}\right)^{*}: \Omega^{p, q}(N G, \operatorname{ad}(\bar{N} G)) \rightarrow \Omega^{p+1, q}(N G, \operatorname{ad}(\bar{N} G)) \\
& \delta_{\mathrm{ad}}^{\prime \prime}=(-1)^{p} \mathrm{~d}_{\overline{\mathcal{D}}}: \Omega^{p, q}(N G, \operatorname{ad}(\bar{N} G)) \rightarrow \Omega^{p, q+1}(N G, \operatorname{ad}(\bar{N} G)) .
\end{aligned}
$$

Let $\delta_{\mathrm{ad}} \stackrel{\text { def. }}{=} \delta_{\mathrm{ad}}^{\prime}+\delta_{\mathrm{ad}}^{\prime \prime}$ and $H^{*}(\Omega(N G, \operatorname{ad}(\bar{N} G)))$ be the total differential and total cohomology of this bicomplex, which is a ring under the obvious operation $\AA: \Omega^{k_{1}}\left(N_{q} G, \mathfrak{g}^{\otimes / 1}\right) \times \Omega^{k_{2}}\left(N_{q} G, \mathfrak{g}^{\otimes / 2}\right) \rightarrow \Omega^{k_{1}+k_{2}}\left(N_{q} G, \mathfrak{g}^{\otimes\left(1_{1}+k_{2}\right)}\right)$.

Theorem

There exists a natural isomorphism of vector spaces:

$$
\zeta_{\text {ad }}: H^{*}(\Omega(N G, \operatorname{ad}(\bar{N} G))) \xrightarrow{\sim} H^{*}\left(B G, \operatorname{ad}(E G)_{\text {disc }}\right) .
$$

which respects the cup product.

Definition

The universal real twisted Chern class of G is the real twisted Chern class of $E G$:

$$
\mathfrak{c}(G) \stackrel{\text { def. }}{=} \mathfrak{c}(E G) \in H^{2}\left(B G, \operatorname{ad}(E G)_{\text {disc }}\right)
$$

We have:

$$
\mathfrak{c}(G)=\zeta_{\mathrm{ad}}\left([\mathcal{V}(G)]_{\delta_{\mathrm{ad}}}\right)
$$

where the universal simplicial adjoint curvature $\mathcal{V}(G) \in \Omega_{\delta_{\text {ad }}{ }^{\text {cl }}}^{2}(N G, \operatorname{ad}(\bar{N} G))$ is induced by Dupont's universal simplicial connection.

Proposition

We have:

$$
\mathcal{V}(G)=\theta \in \Omega_{\delta_{\mathrm{ad}^{-\mathrm{cl}}}^{1,1}}^{1,}(N G, \operatorname{ad}(P G))=\Omega_{\mathrm{cl}}^{1}(G, \mathfrak{g})
$$

Moreover, for any $T \in S^{q}\left(\mathfrak{g}^{*}\right)^{\Gamma}$, we have:

$$
\psi(T)=T(\mathfrak{c}(G) \cup \ldots \cup \mathfrak{c}(G)) \in H^{2 q}(B G, \mathbb{R})
$$

Let P be a principal G-bundle on a manifold M. Recall that the Chern-Weil morphism $\psi_{P}: S^{q}\left(\mathfrak{g}[2]^{*}\right) \rightarrow H^{\text {even }}(M, \mathbb{R})$ of P is defined through:

$$
\psi_{P}(T) \stackrel{\text { def. }}{=}\left[T\left(\mathcal{V}_{\mathcal{A}} \wedge \ldots \wedge \mathcal{V}_{\mathcal{A}}\right)\right]_{\mathrm{d}}=T(\mathfrak{c}(P) \cup \ldots \cup \mathfrak{c}(P))
$$

where $\mathcal{A} \in \operatorname{Conn}(P)$ is an arbitrary principal connection on P and the cup product includes tensorization along $\operatorname{ad}(P)$ (it is the cup product for the sheaf cohomology of $\left.\mathcal{C}_{\text {flat }}^{\infty}(\operatorname{ad}(P))\right)$.

Proposition

Let $f: M \rightarrow B G$ be a classifying map for P. Then:

$$
\mathfrak{c}(P)=f^{\sharp}(\mathfrak{c}(G)) \in H^{2}\left(M, \operatorname{ad}(P)_{\mathrm{disc}}\right)=H_{\mathcal{D}}^{2}(M, \operatorname{ad}(P))
$$

and:

$$
\psi_{P}=f^{*} \circ \psi
$$

Applying the universal bundle functor E to the projection morphism $q: G \rightarrow \Gamma$ gives a q-morphism of principal bundles $E q: E G \rightarrow E \Gamma$ which covers the map $B q: B G \rightarrow B \Gamma$. This is equivalent with a based isomorphism of principal Γ-bundles $\phi: \Gamma(E G) \xrightarrow{\sim}(B q)^{*}(E \Gamma)$, i.e. a (G, q)-lift of structure group of $(B q)^{*}(E \Gamma)$.

Since $\operatorname{ad}(E G) \stackrel{\text { def. }}{=} E G \times_{A d} \mathfrak{g}=\Gamma(E G) \times_{\bar{\rho}} \mathfrak{g}$, this gives:

$$
\operatorname{ad}(E G) \simeq(B q)^{*}(E \Gamma) \times_{\bar{\rho}} \mathfrak{g}=(B q)^{*}\left(E \Gamma \times_{\bar{\rho}} \mathfrak{g}\right)=(B q)^{*}(\mathfrak{g}(E \Gamma))
$$

